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It is shown that the anomalous constant S associated with the soft 7% —~2y decay ampli-
tude is determined by a product of high-energy electroproduction and annihilation cross
sections. A similar result holds for the coupling of the trace of the stress-energy ten-
sor to photons. Wilson’s theory of broken scale invariance is assumed. We observe
that the Fritzsch—Gell-Mann algebra of bilocal operators uniquely specifies disconnect-
ed contributions, and, in particular, implies S =%, the quark field-theoretic value.

Several authors® have observed that gauge and chiral invariance determine all partially conserved
axial-vector current (PCAC) anomalies up to an unknown multiplicative constant, the anomaly® associ-
ated with 7°~ 2y decay. This constant has been extensively studied® in perturbation theory, where
spinor triangle diagrams are responsible for its existence.

In this note, it will be shown that the theory of broken scale invariance* directly relates high-energy
cross sections to anomalies in low-energy theorems. Both anomalous PCAC and the analogous calcu-
lation for the hadronic stress-energy tensor 6,,(x) can be treated in this nonpertubative fashion. In-
stead of having to introduce the couplings of elementary fermions to currents, we shall consider con-
stants such as the ratio of cross sections for high-energy e*e” annihilation,

R =0(e*e” —hadrons)/oe*e = pn*u”). (1)

The derivation makes use of algebraic constraints which relate short-distance expansions for products
of several operators to those of less complicated products.

Suppose that products of local operators A(x),B(x),C(x), -+ are expanded at short distances in terms
of ¢ numbers €,(x),f,(x,9), ++, and operators O,(x) *5:

T{A()BO)C(9)} =23, f (x,9)0,(0).

Each c-number function f,(x,y) contains poles and branch cuts in the variables u =x% — i€, v =92 — i€,
and w = (x —y)* —i€. Consider coefficients of the u singularities. Because the expansion
T{A®)B(0)}= T, (*)0,’ (0)
converges weakly, the formula
T{AX)BOIC(9)}= T ,e,0:)T {0,/ (0C (1)}

holds only if y remains independent of the limit x -0 (i.e., ¥ «<y). However, this does not prevent y
from being in the short-distance region, where the expansion

740, (0)C(9)} = 33 1@ (3)0,(0)
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is valid. Consequently, the # singularities of f,(x,¥) must satisfy the consistency condition®

Fa,3) 7,30 n@ ()€ p(9). @)

The discussion is easily generalized to include products of several operators and limits x;, ++,x;
<KX, **,x,; of the corresponding coordinate differences. Each distinct limit” (or succession of limits)
leads to a constraint equation. To be consistent, a current algebra which is postulated to be valid at
short distances or on the light cone must obey these algebraic conditions.

The application of Eq. (2) to the anomalous low-energy theorem for 7°—~ 2y decay will now be de-
scribed.

In terms of J,(x), the electromagnetic current for hadrons, and J,°(x), the third isospin component
of the axial-vector current, the definition of Adler’s anomalous constant®® S is

S=-— ﬁﬂze“”“ﬂffd‘*xd"y xpy,,T(0|Ja(X)JB(0)3nys(y)l0) . 3)

PCAC and the experimental value for the 7°—~2y decay amplitude imply>® S=~+0.5. Wilson? has shown
that S is completely determined by the leading scale-invariant singularity G gy Of the short-distance ex-
pansion

T(xBy(x’y) :T{J(x(x)JB(O)Jys(y)}:Gaﬂy(x,y)l"“' *t. (4)

The theory of broken scale invariance requires G.s, to be a homogeneous function of degree -9 in x
and .

If no further restrictions were implied by the theory, computing G ., (x,¥) would be a hopelessly com-
plex problem in strong-interaction dynamics. However, Schreier® has observed that, in a strictly con-
formal-invariant world, G.s, must be proportional to

Aogy (6, 9) =20 Try gy +Xy gy+yy , (y=x = vy )y slwvw) 2, (5)

(The y-matrix notation is a convenient shorthand; no dependence on perturbation theory is implied.)
For the real world, it can be shown'® that this theorem is implied by 8°J, =0 and the dimensional con-
straints*

dim87J75<4, dimé <4, (6)

and is not affected by the failure of the vacuum to preserve scale and conformal invariance.
Now consider the limit x <y of Eq. (4). A consistency condition for G s, will be deduced from the ex-
pansions

T ()T 5(0) } = R(gopx® = 2% o) / (mit)* + K€ 155, x "T¥(0) /3772 4+ -+, (7)
T2 0 ) (9) =R (1,92 = 29,9 I/ (mv)t e e - (8)

We assume that the dots stand for derivatives of operators, terms which break scale invariance, and
operators which have different isospin, dimension, spin, or parity. The constants R [also given by
Eq. (1)], K, and R’ are treated as parameters to be measured experimentally; special values are con-
sidered only when making contact with previous work. Take the limit x <3y of Gopy ©Aypy, and isolate
the leading contribution, which is determined by the J**(0) term in Eq. (7)'!:

Gopy®,9) 2, (Kepy w0 /31%)[R7 (6,9 = 29y ) /(mv)*]. 9)
This procedure fixes the constant of proportionality:
Goylr,) = (KR'/37°)A opy (x,9) . (10)

When written as a Ward identity, Eq. (3) becomes a surface integral in (x,y) space.? Given Eq. (10),
the integration may be performed explicitly'?; the result is an exact formula,

3S=KR’, (11)

for the anomalous constant.?
Equation (11) demonstrates the intimate relation between PCAC anomalies and processes induced by
highly virtual photons. The constant K is given by Bjorken’s sum rule for polarized deep-inelastic
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electroproduction'?; in addition, K? is measured by the cross section'* for e*(q,) +e (g-)~ u" + 1 +7°(q)
in the limit (@* +¢~)>= =, { fixed. [The relevant formulas were derived assuming K =1, the value fixed
by U(6) ® U(6) algebra'®.] Chiral invariance at short distances implies that R’ is the isovector part of
the ratio R defined by Eq. (1).

Bjorken'® has shown that the choice K =1 leads to large asymmetries in polarized inelastic electro-
production, so it should be possible to determine K experimentally. However, although R’ is given by
a well-defined cross section, it cannot be directly measured. If we allow for the possibility that Jp(x)
is not a pure SU(3) octet operator (4R’ <3R), the bound

4S<KR (12)

may provide a practical test of the PCAC result S=~0.5.'¢
Clearly, this discussion is related to the construction of current algebras on the light cone. Fritzsch
and Gell-Mann' generate an algebra of bilocal operators from the quark model, and then propose that
this algebra be treated as a nonperturbative abstraction. Unfortunately, this amounts to a postulate
that chiral SU(2) ®SU(2) is a badly broken symmetry,'” because the algebra requires K=1, R’ =3, and
hence S=%. The existence of constraints such as Eq. (2) means that neither K nor R’ may be altered
without changing many other coefficients in the algebra. For example, any algebra in which the prod-
uct §,%(z)F,°(0) of SU(3) currents F,°(x) (@=1,+++,8) does not contain the “spin-0 term” z .z gz *F,°(0)/2°
at small z must obey the constraint
lim lim &,*(x)Fs°(9)F,°(2)F5(0) = = R *2¥s 5, (67" — 29"y 5)F,(0)/27°2%y° + - - - (13)
2Ky P2KX
at small x, with S,5,=8yp 85, +&yv&sp—&ys&w- Therefore, even if the Fritzsch—Gell-Mann hypothesis
is supposed to apply only to g-number contributions, the result S=% cannot be evaded. In fact, any
"disconnected term in the algebra can be obtained by this procedure.
Some anomalies (such as those® for y -~ 37, 2y~ 37) may be computed without specifying the leading
singularity of an operator product throughout the short-distance region. Consider the vertex®

(v(€;, k), 7(€5,R,)0,1]0) = (€, €,k R, ~ €2k €,k )F((R, +E,)?). (14)
The formula analogous to Eq. (3) is
F(0)=-3ma [[d*xd x-yT{0|J®(x)J5(0)8," ()0}, (15)

where a is the fine-structure constant. We want to replace 2y,6,"(y) by 8,/ (2y,y”=6,"y%)60,,(y), inte-
grate by parts with respect to ¥, and obtain equal-time commutators in the usual way. However, the

x integration must first be restricted to |x,!>7n (where 7 is fixed at a small postive value), so that the
x,y—~0 region of the product

THT o (6)T5(0)8 1, (9) } = K oigy (¢, 9 4+ » (16)

can be avoided. For example, the expansion for 7 {Ja(x)Gw(y)}~ (x —v)™* may be substituted in T{Ja(x)
XJB(O)BP,,(y)} (to form an equal-time commutator) only if the condition x —y <7 is satisfied. By per-
forming the y integration in this fashion, we obtain the formula

F(0)=~ gima ., d% 8, (%, T{OT% ()T (0)| 00} + O(m) ,
which immediately reduces to the desired result,
F(0)=2Ra/3m. an)

Although the singularity Kz, is responsible for the presence of this anomaly, its functional form is
not needed; only the region x —y «<x,y contributes to the Ward identity.
If the dilation current is partially conserved,'”'® Eq. (17) leads to the prediction (“anomalous PCDC”),

F .Gy ~2Ra/3m, (18)

for the coupling (€,+€,k, -k, — €,°k,€,°k,)G (, , of the €(700) meson to photons, where IF |~100 MeV is
given by

<€(q)leuv(0)lo> :%Fs(guuqz _qpqv) .

1423



VoLUME 28, NUMBER 21 PHYSICAL REVIEW LETTERS 22 MaAy 1972

In perturbation theory for the Fermi-Yang model (R=1), Eq. (18) reduces to an old result of Schwing-
er’s.?

A detailed account of the current-algebraic treatment of anomalies is being prepared.

I am grateful to Professor K. Wilson for stimulating remarks and helpful criticisms.

Note added in proof.—M. Chanowitz and J. Ellis [SLAC Report No. SLAC-PUB-1028, 1972 (unpub-
lished)] have independently discovered Eqgs. (17) and (18). Their analysis is performed in momentum
space.
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