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by using different formulas, and hence, data on
different hypernuclei. But, in all the cases we
have discussed the discrepancy is less than 0.3
MeV (apart from the uncertainties in the experi-
mental B ,’s used).

(ii) If there are no three-body ANN forces pre-
sent, the four-term formula (3) should work well,
The deviation of the four-term formula can be as
large as 1.5 MeV, and is much larger than the
deviation of less than 0.3 MeV obtained with the
six-term formulas, This may be taken as an evi-
dence for three-body ANN forces.?

(iii) As was noted before, our prediction im-
plies large differences between the B ,’s of mir-
ror hypernuclei, such as (§Li, {He), (fBe, JHe),
(B, 3Li), and (B, ¥Be). If this is confirmed,
this will pose a difficult theoretical problem,? !
The large charge asymmetry predicted hinges on
the experimental B, values of §He and ¥B. For
example, consider the hypothetical case of
B A(He) being 0.5 MeV larger than the currently
accepted experimental value. Then the derived
value of B,(3Li) would be 0.5 MeV less, giving
a less pronounced charge asymmetry,
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Using an example of Press and Bardeen, Newman-Penrose quantities of the electromag-
netic field in a Schwarzschild background are related to a differential conservation law
and hence changes result from a flux. There is no discontinuity in the quantities result-
ing from a sudden change in dipole moment; there is no singular surface which moves
out at 3 the speed of light. It is suggested that for Newman-Penrose quantities to exist,
multipole moments must approach a limit as 1/, u——.

In a recent Letter,’ Press and Bardeen (PB)
suggest that Newman-Penrose quantities (NPQ)
need not be constant when defined at finite dis-
tances rather than at null infinity where the NP
constants®® are defined. The particularly intrigu-
ing aspect of their discussion is the apparent ex-
istence of a surface which moves out at 3 the
speed of light, across which the NPQ may change
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discontinuously from one static value to another.
In their example, PB write the electromagnetic
field as a power series in 1/7, hence as a Taylor
series in the vicinity of infinity. The NPQ are
then found through the coefficient of the appropri-
ate term in this series. In general, the series
has only a finite radius of convergence and that
radius determines the above surface of discon-



VoLuME 28, NUMBER 21 PHYSICAL REVIEW LETTERS 22 May 1972
tinuity. It is the purpose of this note to point out and

that there exists an alternate definition which A = (= 1)y i

leads to the NP constants at null infinity, but at rAs,m=(~1) YAz, -m=Ym, (3b)

finite distances the corresponding NPQ undergo
a continuous change. Thus with the alternate de-
finition, the example of PB does not result in a
¢/3 surface of discontinuity.

A constant of the motion is ordinarily associat-
ed with a differential conservation law. In a ser-
ies of papers,®”” the relationship between the NP
constants and such a conservation law was estab-
lished. For linear field equations, the conserva-
tion law is related to the linear superposition of
solutions. In general relativity, the argument is
more complicated, but need not concern us here.
The details are presented in Refs. 6 and 7.

Press and Bardeen limit their discussion to the
electromagnetic field in a Schwarzschild metric,
and we shall deal with their example. However,
we shall take results and notation from Ref. 7.
The components of electromagnetic field and the
vector potential may be expressed in terms of a
null tetrad® (lun* =m ,#m " =1, all other contrac-
tions vanishing) as follows®:

F‘“’=<p2l["m”]— (pl(l[“n”]—m [u;ﬁv})

- gontfm"+c.c.,

1)

At =AF+A,mb +Agm b,

Fu,=0,A,-0,Ay,

where IMm”=1"nY - I*m"?. The gauge is chosen
so that A, =A /¥ =0. Similar expressions hold for
SF*Y and A" when they appear.

Since 7¢, satisfies a generalized scalar wave
equation, it is convenient to introduce, following
PB, the quantity

@, =¥
and to express all other quantities in terms of .
To do so explicitly, expand all quantities in a ser-

ies of appropriate spin-weighted spherical func-
tions. In particular,

\Il=l£v-\l‘l11moylm' (2)
m

We require the results only for /=1, so we shall
suppress and write simply ¥,,,=¥,. Then in an
obvious extension of this notation for /=1, we ob-
tain from Maxwell’s equations and Eqgs. (1)

7900 ym = ar \Ilm b

2 —
Y O1,m= Y,

Y@y m=—[08,~ 3(1-2M /7)3,]¥,,

(3a)

Ay=[8,-3(1-2M/7)3,][¥,+(-1)"¥,].

By applying Green’s identity to Maxwell’s equa-
tions we find a conserved vector density

tP=3(- g 2 {BA FH - A SFHL,

ke Rl P (4)
. =(BF®),,=0=¢ ,=0.

The varied quantities can be determined in ac-
cordance with Eq. (3) in terms of a 3¥,,. To ob-
tain NPQ, choose E\Ifm to be an incoming dipole
field which in flat space is different from zero
only on a past null cone and in curved space van-
ishes at least behind the surface® u +27*=2R,

8%, =7%,(B,/r*) + 0(r ™), )
(5

B, +2v*) =a,v,*6(u +2r* - 2R);
R is a constant which specifies the incoming null
surface, and v, is defined by u +27,*~ 2R =0 for
fixed # and R.

Then we define the NPQ as (I, =« ,)
anFou,ry)= | t°l,drdodo,

u=const
or by using explicitly Egs. (2), (3), and (5)
F ., v)=7r%[0,7%, ¥, +0(r 3],

where the subscript has been dropped from 7.
In Ref. 7 we show that

im$& ,(u,v)=F,

y >
are constants of the motion (the NP constants) in
an asymptotically flat space-time and for fields
which together with two derivatives exist at null
infinity. In general &,(u, ) will not be constant,
Furthermore, the limit «# - « will in general lead
to quite a different value than the limit » - ., To
complicate matters, it is not clear, at this time,
which, if either, limit is measurable in a given
physical situation. However, because of the dif-
ferential conservation law ¢” ;=0 the difference
in the &, evaluated on two surfaces, u=u, and
u =u,, will be given by a flux integral®” over a
timelike surface connecting the two null surfaces
for r>v,.

Let us now consider the example of PB to see
whether a discontinuity appears on the surface u
=27. They consider a situation which is initially
static; a sharp pulse of dipole radiation is emit-
ted along the null surface # =0; the electric di-
pole moment becomes constant once again. To
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first order in M, they write the solution as

2
\Ilm=~D—’f‘-+3 MD"‘+ (%), u<0,

y T2 2 8
M
¥ _D,’ §_MD,,,+§M(D,,,’—D,,,) u(u +8r/3)
m=T, 9Tty ¥? (u+27)?

+OM?/7®), wu>0.
Substituting this solution into (6), we obtain
Fulu,7)=3MD,,+ OM?/y), u<0;
F (e, ¥)=3MD,, +3M(D,,’ =D u?/(u+2r)?
+eee, u>0,

where the dots indicate terms which vanish in
both the limits, » -~ « and u - «.

For u<0, &, is constant and to first order in
M it is just the NP constant F,,=3MD,. Foru
>0, F, is no longer constant but rather it in-
creases uniformly from its previous constant val-
ue. Nothing unusual occurs at ¥ =27 and the limit
u -~ gives a measure of the new dipole moment
D, as desired by Press and Bardeen.

Thus it appears that no physical discontinuity
moves out at a velocity 3¢ as suggested by Press
and Bardeen. However, there is one other point
to discuss. The argument used by PB shows that
if the dipole moment does not become static in
the infinite past, NP constants may not exist at
all. Since their argument depends on the pile up,
at null infinity, of (3¢) surfaces of discontinuity,
it is interesting to see how this behavior appears
in the present context.

The existence of NP constants depends on sat-
isfying stronger conditions at null infinity than
those required for proof of the peeling theorem.'
For peeling to occur, it is sufficient that ¢,
~0(r~%; NP constants require the first two
terms of an asymptotic expansion:

Y39, =0" + @, /v +0(r73),

In flat space the NP constants arise from the in-
coming field. For the dipole fields

@m(v; 7) :f.m(v) —Fa@)/7, v=u+2r.

Therefore, in order that NP constants exist we
must require f,,~v ™!, v~ . In fact, all multi-
pole moments of the incoming radiation field
must die out like v "! in order that the constants
exist. At null infinity, the limit u — - « and v
-+ merge; in flat space they are identical, in
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curved space they tend to the singular point I,.
Since in curved space, the outgoing field is scat-
tered to produce an incoming field, one suspects
that NP constants exist only if the outgoing dipole
field is characterized by functions f,(«) and con-
stants f; ,, such that

fm(u) _fo,m~uul’ U=,

At present, there is no proof of this conjecture.
Nonetheless, F,(«, ) [Eq. (16)] and both of its
limits may exist under weaker conditions.

To conclude this discussion, by defining the
NPQ through a differential conservation law, dis-
continuities such as discussed by PB do not oc-
cur. The discontinuities arise in the work of
Press and Bardeen because they identify the con-
stants or quantities with coefficients in a power
series. This power series does not, in general,
have an infinite radius of convergence, but one
should not attach physical significance to this
mathematical fact. Furthermore, one would ex-
pect that should the NPQ become measurable,
hence physically important, their relationship to
a conservation law would likewise be important.

*Research supported in part by the National Science
Foundation and the Aerospace Research Laboratories.

'W. H. Press and J. M. Bardeen, Phys. Rev. Lett. 27,
1303 (1971). -

’E. T. Newman and R. Penrose, Phys. Rev. Lett. 15,
231 (1965).

E. T. Newman and R. Penrose, Proc. Roy. Soc., Ser.
A 305, 174 (1968).

“J. N. Goldberg, J. Math. Phys. (N.Y.) 8, 2161 (1967).

°J. N. Goldberg, J. Math. Phys. (N.Y.) 9, 674 (1968).

’D. C. Robinson, J. Math. Phys. (N.Y.) 10, 1745
(1969). -

"E. N. Glass and J. N. Goldberg, J. Math. Phys.
(N.Y.) 11, 3400 (1970).

#The Schwarzschild metric is taken in null coordi-
nates:

ds®=(1—2M/) du® +2du dr —r*(d6* +sin’0 d@?);
u=t—r*,
r*=7r+2MIn@r/2M~1).
®In notation of Press and Bardeen
Po=P1s P1=Ppy P2=¢-4.

Vg, T. Newman and R. Penrose, J. Math. Phys. (N.Y.)
3, 566 (1962).



