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The resonances of saturation which occur when the mode spacing is equal to the Zee-
man splitting are theoretically studied for a mode spacing the natural width broadened

by collisions. Two kinds of resonances occur. The first set, due to a population effect
(crossing of holes), is not resolved and is unobservable. The second set, due to a Zee-
man coherence effect, is well resolved since the widths of the resonances are of the or-
der of the Hanle-effect width. These resonances are very sensitive to the relative phases
of the modes.

When a, gas (Ne in our experiments) excited by
a discharge is placed in a magnetic field and is
submitted to a resonant laser beam (He-Ne laser)
linearly 0 polarized, a resonance appears on the
fluorescence lines emitted from one of the laser
levels each time the Zeeman splitting is equal to
the frequency difference between two modes.
These resonances, first observed by Fork, Har-
grove, and Pollack, ' have been used to measure
Lande g factors. ' However, some aspects con-
cerning their widths and the influence of mode
locking on their amplitudes were not clearly un-
derstood. For that reason we have performed a
semiclassical calculation, in the formalism of ir-
reducible tensors, up to the fourth order of per-
turbation in the laser electric field (as previously
done to second order to study the Hanle effect').

In this Letter we summarize the results in the
case J, =0, J, =l (a, lower level; 6, upper level).
The details of the calculation and the discussion
of the positions of resonances when both levels
have a Zeeman structure will be published later. 4

The hypotheses are the following:
(a) As our detection does not resolve the spec-

tral shape of the fluorescence lines, and further-

more as the detection is perpendicular to the la-
ser beam, it is not necessary to take into account
the frequency correlation between the laser and
the fluorescent light. " The calculation of the
atomic density matrix is sufficient to determine
the fluorescence.

(b) The perturbation development is performed
according to the usual methods with the rotating-
wave and the Doppler-limit approximations. "

(c) We take into account spontaneous emission
from the upper to the lower level.

(d) Although we must write the equations sepa-
rately for each atomic velocity along the laser
axis, we assume that the relaxation is sufficient-
ly isotropic to produce no coupling between dif-
ferent tensorial orders and to give rise to relax-
ation rates independent of Q (we write the irre-
ducible tensor as Tz', k is the tensorial order
and Q the component).

(e) We take into account velocity cha.nges due
to collisions or trapping of fluorescence lines
with the help of the strong-collision model. ''

With the last two assumptions, the relaxation
of the components on the T~" basis of the density
matrix for the atomic quantities (u stands for aa,
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or bb and refers to the submatrices within each level) can be written"

[(d/dt) „p~(z))]„),„=—I" '(k) p"(v) + y„'(k)WM(v )f„p'(z/') dz) ',

where WM(v) is the Maxwellian velocity distribution; I'„(k) is the relaxation rate taking into account
radiative decay, destruction by collisions, and velocity changes; and y, (k) is the probability of surviv-
al of the quantity T after velocity changes by collisions or reabsorption of a photon. The usual re-
laxation rates, which can be measured by Hanle-effect experiments and which are insensitive to veloc-
ity changes, are given by

(2)

Expressions like (1) can be written for optical quantities „Oo (off-diagonal submatrices). Since 4, =0
and Jb =1, the three components of the optical dipole, „p~', are only to be considered and we write
I'„'(1)=I"„'. The imaginary part of I'„' (pressure shift) is assumed to be included in the optical atom-
ic frequency &u. Because of the Doppler-limit approximation, which is expressed by F„«hv (Doppler
width), the effect of velocity changes on optical quantities can be shown to be negligible.

The relaxation terms (1) are inserted in the Schrodinger equation which is solved by iteration. " As
the fluorescence is detected with an analyzer for polarization )z (or (T in high magnetic field), the ob-
served saturation signal is a linear superposition of longitudinal quantities at fourth order, p," & ~.

With a linearly (z-polarized laser, the orientation, p, (aa and M will be abreviated as a and 0) vanish-
es so long as the Zeeman splitting ~b is small compared to the Doppler width 4v. ,p, ', „p,', and b po'
are proportional to each other (in the special case J, =0, J, =1), and therefore the saturation signal
does not depend on the fluorescence line studied. It contains two sets of unmodulated resonant terms
of the form

L(u, p, s) X(il„-(p+s)/2) y~'(2) X(ii„—p/2)X(5„-s —
p/2)I

, F, '(2) +z(P +2(d, ) 2F„'+i[P —s+2(d, ) Av F,(2) +i(P +2(u )

B(p, s) =g „,I (v, p, s)f(p)X(5 —(p +s)/2) [2I", '+i(p —s +2(u )] '+c.c. (4)

v, p, and s determine the four modes (denoted v, ((z, X, and tc) according to Fig. 1; p and s are multi-
ples of the mode spacing z) &u; X(Q) =V )z exp[(O/Av)'] is the Doppler line shape; and 5, =(u„—m (cu is the
optical atomic frequency). f(P) is given by

f(P) =(F,'+iP) '(I —y, [F '(0) +iP] 'j+ [F~'(0)—+iP] ' ——[I' '(1) +iP] '+-'[I', '(2) +iP] ',

where yb, is the probability of spontaneous emis-
sion for the laser line 6-a. The influence of the
phase y and the amplitude S of modes is con-
tained in

I, (v, p, s) =S„S„S,S„cos(q, —y„+y„—q „).(6)

Let us first discuss the terms A(P, s). The
resonant factor [I', '(2) + i( p + 2~,)] ' expresses
the ability of modes v (& component) and Zz (&'
component) to produce, to second order of per-
turbation, transverse alignment, p, ' ' modulated

! at the frequency p =tv, —(d „; the resonance occurs
when the beat frequency is equal to the Larmor
frequency. We call this factor the "Zeeman fac-
tor. " It is a manifestation of the Hanle effect (p
=0), and of the resonances of modulation' (p g0).
The factor [2I'„,'+i(p —s+2&(),)] ' is resonant
when 6 —s =~,—x&= —2~„ i.e., when the modes
(Zz, o') and (v, o ) interact with atoms of the same
velocity. This factor expresses the need of an
optical coincidence (within a 2I"„'width) between

FIG. 1. Modes in the frequency scale, definition of the notation. The condition ~& —&+~y-K =0 insures the
fourth-order terms to be unrnodulated. Modes are assumed to be equidistant.
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the first pair of modes (v, p) and the second one

(w, &). The condition &u v- e &+ u& z
—tu„=0 (unmodu-

lated saturation signal) imposes the frequency of
the fourth mode A and insures that the second pair
has the exact beat frequency to demodulate, p,' ' .
The X Doppler factor expresses the number of
atoms with the correct velocity to interact with
the four modes.

The last term of the last factor in A(P, s) arises
from atoms whose velocity has changed at second
order before the interaction with the second pair
of modes. The optical coincidence factor is re-
placed by a second Doppler X function which is
the probability for atoms to get the correct veloc-
ity to interact with the second pair of modes
(strong-collision model). The factor [I', (2) +i(p
+2',)] ' is a part of the Zeeman factor.

Because of their origin we call resonances of
the type A(p, s), "Zeeman coherence effect"
(ZCE) resonances (transverse alignment; coher-
ence between Zeeman sublevels ~m =2). On the
other hand, B(P, s)-type resonances are due to a
"population effect" (PE); as it is expressed by the
factor f(P), which takes the place of the Zeeman
factor in A(P, s), these terms arise from second-
order longitudinal quantities, ~pa" ', or in other
words from the populations of the Zeeman sublev-
els. These terms are produced by beating of the
v' components of modes v and p (up to second
order) followed by an interaction with modes (A,
a' ) and (v, cr ). The optical coincidence between
the two pairs is insured by the factor [2I'„'+i(p
-s +2',)] '. For the most important term, p =0
(v =p; I =tc), this factor produces a Lorentzian
resonance which is interpreted as the crossing,
by magnetic scanning, of the holes burned in the
Doppler distribution by modes (p, , o') and (~, o ).
Note that the contribution to the PE of atoms
whose velocity has changed presents nonresonant
behavior and has been omitted in (4).

Let us now focus our attention on L(v, P, s).
When modes are free running their phases are
randomly distributed. Moreover, modes are in
general not exactly equidistant and their relative
phases can be regarded as slowly varying. There-
fore, except for s=0 (v=a; p. =A) or for p=0 (v
= p, ; K = A), the quantities L(v, p, s), A(p, s), and
B(P, s) disappear when averaged (summed over v

and averaged over time). The remaining terms
are those involving no more than two modes so
that the phases eaneel out in (6). On the other
hand if modes are phase locked in such a manner
that they are all in phase at regular time inter-
vals (laser modulated in pulses), all relative

phases are equal for a correct choice of the ori-
gin of time. Therefore the cosine term in (6) is
equal to 1 in every ease and all values of s and p
are possible. Consider now two cases:

(I) Large mode spacing. If—I'„'(k), I',„'«s~,
f(p) is negligible for p WO and the two factors in
the first term of A(p, s) must be simultaneously
resonant (s =0). Furthermore the contribution of
atoms whose velocity has changed is negligible. "
Therefore the only important terms are A(p, 0)
and B(0, s); they are not phase sensitive and pro-
duce mell-resolved sets of resonances for 2,
=r b&u (r is an integer). Resonances from B(0, s)
are Lorentzian curves of width 2I'„' (twice the
width of holes).

(2) Mode spacing of the order of the hole width.—The usual conditions in our experiments (b&u

80 MHz, pressure of the order of a few Torr)
are defined by

I' '(k) & I'„'-Av.
Resonances arising from the PE, B(0, s), are no
longer observable since they all overlap because
of their broad width 2I',„' [Fig. 2(a)]; terms sen-
sitive to the phase of modes (p 4 0) remain small
as long as I' (k) is smaller than 4~.

In the expressions A(P, s), from the ZCE, it is
not possible to neglect terms arising from veloc-
ity diffusion or those which contain two denomina-
tors which are resonant in different magnetic
fields. If modes are phase locked, all values of
P and s are possible. It is easy to see that the
quantity Q,A(p, s) represents a narrow symmet-
ric resonance centered at 2&v, =-P. The magni-
tude of the resonance in zero magnetic field (P
=0) and that of the lateral resonances (p c 0) are
of the same order; their width is of the order of
I', '(2) so that they are well resolved [Fig. 2(b)].
When modes are free running, the central reso-
nance [Q,A(0, s)] is not affected as it involves
only two modes (v =p; v =A). On the contrary,
resonances for p wO become much smaller as the
only nonvanishing term is A(P, 0) [Fig. 2(a)].

At the limit of very close and very numerous
modes [I' '(k) &Ac@(«v ~NB~, where N is the
number of modes], it is possible to show that
resonances tend to be I orentzian curves of width
I,(2), that is, they have the same shape as in the
Hanle effect (this is true for phase-locked modes
and in any case for the central resonance). Of
course for large laser intensity these curves are
broadened as in the Hanle effect itself, but this
cannot be shown with a calculation limited at the
fourth order of perturbation. "
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FIG. 2. Computer calculation of saturation resonanc-
es produced by eleven modes (E& = E& =3 for —3- v- 3,
E& =2 for v=+4, E& =1 for v=+5). The Doppler
width is» = 800 MHz. The mode spacing & = 80 MHz

and the relaxation rates are (in MHz) I' ' =100, 1" '(0)
I

ab
=9.6, I& (1) =11, 1&'(2) =11.5, I&(2) =-7 5 I' ' =15
Thhese conditions correspond approximatively to the
laser line at 7305 A with 1.5 Torr of Ne (see Ref. 12}.
(a) Modes free running. Resonances from ZCE and PE
are compared. ZCE resonances are narrow and re-
solved; the resonance in zero magnetic field [QsA(0,
s)] is much higher than the others [A(P, 0)]. PE reso-
nances [B(0,0) and B(1,0)] are not resolved, as is
shown by the curve +sB(s, 0). Off-resonance terms
B(P, O) are negligible.

S,= Q [X(p, s)+B(p, s]
sorp=0

is the resulting signal. (b) Nodes phase locked. ZCE
resonance for p=1 has the same order of magnitude as
that in zero magnetic field. &&=Q»[A(p, s) +B(p, s)]
is the total signal.

When the cell is inside the laser cavity, the
standing-wave aspect of the laser beam does not
qualitatively change the results. The contrast
between free-running- and phase-locked-mode
resonances is increased approximately by a fac-
tor of 2. Resonances such as the Lamb dip do
not appear as they overlap like other PE.

We point out the importance of the relative mag-

FIG. 3. Experimental records of the saturation sig-
nal on fluorescence lines (x polarization). To obtain a
spontaneously phase-locked oscillation, we must strong-
ly decrease the laser intensity. Therefore the intensity
of the phase-locked signal is much less than that of the
free-running signal. Nevertheless these curves clearly
demonstrate the difference of behavior between the lat-
eral resonances and the central one. The position of
resonances provides a measurement of the Lande g fac-
tors (see Refs. 2 and 4). The width of resonance ap-
pears to be of the same order of magnitude as the
Hanle-effect width. A quantitative study of the shape of
resonances has been done by Ducloy (see Ref. 13) .

nitude of the mode spacing and of the hole width.
In the experimental cases [Eg. (7)], the reso-
nances are due only to the ZCE's. The resonanc-
es in nonzero magnetic field are very sensitive to
the phases of modes, as is illustrated b Fi 2

Thiis behavior is well verified experimentally
{I'ig. 3).
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The real part of the shear mechanical impedance has been measured for nematic-cho-
lesteric mixtures as a function of concentration. At low concentrations the results are
found to be in good agreement with the theoretical expression derived by Brochard.

In this Letter we report on the first observa-
tion of pitch dependence of the real part of the
shear mechanical impedance of a cholesteric
liquid crystal. In a Cartesian frame Q(ryan), this
impedance can be represented by a matrix Z as
shown recently by Brochard. ' When the ultra-
sonic shear-wave vector and the helicoidal axis
are parallel to the Oz direction, the diagonal
elements of Z are

interface fused silica-liquid crystal sample.
Two geometries can be used: (a) The director

at the interface can be parallel to the flow. The
amplitude of the reflection coefficient is then

Z, —8„„

(b) The director at the interface can be perpen-
dicular to both flow and gradient. Then,

Z, —B,„

(lb)

where M and N are linear combinations of the
Leslie -Ericksen viscosity coefficients o, ,

'3
N=-a1

Z

m=-,'(n, + ct, + o,) --,'o.,(1+y,/y, ).

p is the density, p, =ll/q, is the helicoidal pitch,
and v is the circuIar frequency of shear waves;
k, and k, are wave vectors of the two transverse
modes and are given by the roots of the disper-
sion equation:

4 2 &p Zp + &o

g~p, j~)p

The case qo
= 0 corresponds to the nematic

phase for which the shear impedance has been
calculated. ' The real parts R„„and R„of Z„„
and Z„can be determined from the reflection
coefficient of transverse uItrasonic waves at an

where Z, is the shear mechanical impedance of
the fused silica.

The behavior of Z depends critically on the
ratio P,/e, where e is the penetration depth of
shear waves, given by e= (ti/vp)t's (q being a
viscosity coefficient). If

P / c«e1, R„„=R„,

P,/e» 1, R„„PR„.
We have measured R„„and R„by using a re-

flectance technique described elsewhere, 4 for
mixtures of par amethoxybenzylidenebutylaniline
(MBBA) and cholesteric propionate (CP), in a
concentration range from 0 to 0.95. The orienta-
tion of the samples has been achieved by rubbing
the surface of the silica bar. The accuracy on
R„„and R„ is of the order of 5%. At very high
concentration, the liquid-crys'tal mixture becomes
waxy and needs to be applied from a solution in
a fast evaporating solvent. In that case the error
on the determination of R„„and R„can be as
high as 20'%%uo.

The pitch is known to vary with weight concen-
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