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J. A. Hertz*
Cavendish Laboratory, Cambridge, England

D. M. Edwards
Department of Mathematics, Imperial College, London SW7, England

(Received 24 March 1972)

Electron-magnon interaction processes afford a basis for understanding the large many-
body effects in itinerant ferromagnets. Careful observance of the requirements of rota-
tional invariance leads to important corrections to the electron-magnon vertex function.
The result is a self-consistent intermediate-coupling theory expected to be applicable to Ni.

This Letter describes an attempt to fill the gap
between weak- (Stoner) and strong- (Hubbard)
coupling theories of itinerant ferromagnetism,
taking the random-phase approximation (RPA)
theory as a starting point. We will talk in terms
of the conventional single-band model with zero-
range interactions. ' The interaction is assumed
to include at the outset the electron-electron cor-
relation effects discussed by Kanamoir. ' We dis-
cuss here the case of strong ferromagnetism,
where one of the spin bands is either full or emp™
ty. ¹ckeland cobalt are commonly held to fall
under this classification. To be specific, assume
that in the ground state, all the electrons have

v

spin up (partially filling the up band). The bottom
of the down spin band then lies above the Fermi
level.

The up electrons are then inert, since any con-
tribution to their self-energy requires the crea-
tion of an electron-hole pair in the empty down
spin band. Spin-up electron-hole pairs can be
created, though, leading to large and important
contributions to the self-energy of the down elec-
trons. Our initial approximation is motivated by
a consideration of the possible final-state inter-
actions, given the picture of a spin-down electron
and an excited spin-up electron-hole pair. The
Pauli principle forbids interaction between the up
electron and hole because the force is zero range,
and the repeated scattering of the two electrons
is included in the interaction implicitly. We are
left with the strong resonant scattering of down
electron and up hole, which is responsible for
the ferromagnetic instability in the first place.
The electron-hole triplet "bound state" is the
magnon.

We are then led to a magnon-dominance sort of
theory, with the simplest sort of self-energy di-
agram that shown in Fig. 1(a).' At T=O,

I I
I

~ ~

FIG. 1. Self-energy and vertex diagrams: (a) the
lowest-order class of self-energy corrections; (b) the
(formally exact) self-energy; (c) dominant corrections
to (a). The ladders and vertices should, of course, be
replaced by their renormalized values. (d) The struc-
ture of the full vertex I'.

x G)(k', E')y+ (k —k', E —E'),

where V is the interaction strength. The trans-
verse susceptibility g' includes both a magnon
pole and the Stoner continuum of spin-flip excita-
tions. For a strong ferromagnet, the Stoner ex-
citations lie at high energies and have little spec-
tral weight, so on both counts their contribution
to Z is small. Furthermore, even when the spin-
wave mode merges with the Stoner continuum,
there mill still be a strong resonance near the
magnon energy, so it makes good sense to ap-
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proximate y by a simple magnon pole form

x' (q, ~) =o/(~, —~-~~).

(This form is exact as q-0, where the Stoner
excitations have vanishing spectral weight. ) In
that ease, (1) is simply

xd4y' Gi(x, x') I'„(x',y', z) G~(y', y). Taking the
four-divergence of both these expressions, using
the spin conservation condition (&/&z &)J„(z)= 0,
and Fourier transforming, we arrive at the con-
ventional form

q" r„(p, p —q) = q, I;(p, p - q) —q I'(p, p - q)

Z,(k, E) = V2og
kl —Ekl- (dk-g, I+ =« '(p)-« '(p-q). (4)

where o is the magnetization (=(n&) here). An

important point is that with or without the spin-
wave pole approximation, Zo only has spectral
weight above a sharp threshold which is always
at or above the Fermi energy. 4

This level of theory has two serious drawbacks.
First, in attempts to apply it to real metals, it
leads to energy shifts which are unrealistically
large. ' And more alarmingly, it leads to the fol-
lowing vexing self-consistency problem, In order
to make the theory self-consistent, dressed spin-
down electron propagators should be used in the
ladder of Fig. 1. But the resulting susceptibility
is unacceptable because the magnon pole now ap-
pears at a negative energy (for sufficiently small
q and certainly for q = 0). This behavior violates
the Goldstone theorem (an expression of rotation-
al invariance), which demands that the pole in x
occur at ~ =0 for @=0 and positive cu for finite q.
This inconsistency was also discussed by Brandt. '

We now show how to construct a theory which
gives a reasonable description of many-body ef-
fects and at the same time maintains rotational
invariance. As we will see, it has several inter-
esting features. The idea is to keep a generalized
magnon dominance picture, but with a renorm-
alized electron-magnon vertex function [Fig. 1(b)]
and to use the requirement of spin conservation
to dictate the renormalized vertex. The formal
tool for imposing this condition is a Ward identi-

The identity is straightforward to derive, fol-
lowing the Takahashi procedure. ' To summarize
it, one considers the coupling of the system to an
external four-vector field E&. The time compo-
nent E, couples to the spin density S(z); we take
it to be, say, the component H'=H„+iH, of a
magnetic field. [It then couples to S (z).] The
spatial components I"; couple to the spin current
density 4, (z). Perturbation theory then gives
the first-order response of the spin-flip electron
propagator G ~~(x, y) as (T[J„(z)g ~(x) g ~ '(y) ]).'In
this notation, x means (x, f) and J, (z) is the spin
density S (z). One defines the vertex function
F&(x, y, z) by setting this response equal to fd'x'

An important point here is that in the ferromag-
netic state, (4) cannot be reduced to the usual dif-
ferential form F&(p, p) = &G '(p)/&p& because the
right-hand side is finite at q = 0.

Consider now y(p, p —q), the irreducible part of
I;(p, p —q). By "irreducible, "we mean that a
diagram for it cannot be divided into two discon-
nected pieces by removing an interaction vertex.
Figure 1(d) shows the relationship between I'and
y. If we divide any reducible diagram for F at its
rightmost point of reducibility, everything to the
left of that point is a contribution to the full x(q)
and everything to the left a contribution to y(p, p
—q):

Fo(p, p —q) = r(p, p —q) + l'X(q)y(p, p —q). (5)

The irreducible vertex is important because a
separation exactly like (5) may be made in the
structure of all the diagrams which replace the
RPA ladder of Fig. 1(a) in diagrams for the self-
energy, resulting in the identification of Vy(k, k )
as the electron-magnon vertex function in Fig.
1(b).

To generate our estimate of y, we first take
the limit q-0 in (4) to get rid of F. [Actually,
one must check that I does not contain any singu-
lar (-1/Iq I) terms in this limit. In fact it does,
but they cancel at q=0. ] Conbining this with (5)
and using the magnon propagator (2) (exact in this
limit), we obtain at q, =0

where 6 = Vo is the Hartree-Fock band splitting
and Z is the rest of the self-energy (all the many-
body effects). Then approximating y(k, k') by
y(k, k), it is simple to solve for

Z(k, E) =y(k, E; k, E)Zo(k, E)

= Z,(k, E)/[1 —Z,(k, E)/~],

where Z, is given by (1) with the full x(k —k') in
place of the RPA expression. It is also illuminat-
ing to exhibit the form of the total self-energy,
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including the Hartree term:

Z, o, (k, L') = 4 + Z(k, E)
= ~/[1 —Z,(k, &)/~]. (8)
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That is, all the many-body effects are concisely
expressible in terms of a k- and E-dependent re-
normalization of the band splitting.

Furthermore, it is easy to check that using Vy
in place of V in calculating g leads to the proper
long-wavelength, low-frequency behavior required
by the Goldstone theorem. We have (exactly)

X(q) = V'(q)/[1 —Vy(q) 1,

where

1.5

1.5

' - 'max
.5

p(q) = (27)) afd k p(k, k'—q) G ~(k) Q ~(k —q) (10)

and at q = 0, the choice (6) makes the denominator
of (9) vanish.

Diagrammatically speaking, the source of the
vertex corrections lies in processes where the
spin-down electron in the X ladder can scatter
off the up electron as well as the up hole, as
shown in Fig. 1(c). One can isolate an effective
bare vertex A for direct electron-magnon scatter-
ing; at zero momentum and energy for the spin
wave, we find

A = —i(2m) 'V'Jd'k y'(k, k) G &'(k) G &(k)

Summing up all the processes of Fig. 1, we are
again led to (7). Edwards' summed diagrams of
this class for the special case of a nearly half-
filled band, finding a result like (8).

Figure 2 shows typical spectral weight func-
tions obtained in this approximation for down
electrons in a parabolic band model. We have
chosen a bandwidth 5' such that the "band" con-
tains half an electron state per atom. The Har-
tree-Fock band splitting is I.18' and the net
magnetization 0 is 0.417. We calculated Zp from
(3), assuming a quadratic spin-wave dispersion
relation ~, =Dq', with 2mD = 0.3 (m is the elec-
tron effective mass). This estimate of D was ob-
tained from the analysis of Edwards. ' One sees
the possibility of extra quasiparticle peaks well
below the Hartree-Foek energies, for small k.
The lower peak corresponds to the magnetic pol-
aron discussed, for example, by Izyumov, Kas-
san-Ogly, and Medvedev. '

Several consequences are manifest. First, it
is evident that the measured band splitting will
be considerably less than the Hartree-Fock ~,
and this fact should be kept in mind in attempts

1.5
FIG. 2. Spectral weight functions for down electrons.

Energy is measured in units of the bandwidth, and &ill~
is the largest wave vector in the band. The numbers
next to the different parts of the functions give the re-
lative spectral weights in each region. The Hartree-
Fock energy is marked by the dotted line. (The Har-
tree-Fock spectral weight function is just a spike of
unit weight at this energy. )

to infer the value of 4 or V from optical or photo-
emission data. Furthermore, the minority spin
density of states should be distorted into a two-
humped structure, and this effect should also be
reflected in such experiments. (Recall that in
real transition metals, the d-band holes play the
role analogous to that of the electrons here.
Therefore, the states whose structure is so af-
fected will be the majority electron states below
the Fermi energy. )

Also of interest is the pole in Z when Zp = 4, at
which energy G~ can have no spectral weight. If
the position of this pole is relatively independent
of k (as happens in the heavy-magnon limit, D
-0), the minority band is likely to split.

We used the q = 0 limit of y partly because of
the tremendous analytic simplification it led to.
However, we should point out that it is not a com-
pletely satisfactory procedure. For example, it
is easy to cheek that it is necessary to retain the
q, dependence of various quantities in the steps
leading to (6) in order that (10) reduce to the cor-
rect limit (2) as q -0. Furthermore, we need
the q dependence of y to get the correct magnon
mass out of (10). We have developed a technique,
based on the finite-q Ward identity (4), which
allows one to extract the correct long-wavelength
limit of the spin-wave stiffness constant. We do
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not have space to discuss that here, so we simply
note that this trick permits a sort of approxima-
tion wherein one computes Zo from (8) with this
self-consistently corrected magnon dispersion
relation. Despite these objections, the present
theory is useful because of its analytic simplicity
and as a starting point for more sophisticated
approaches.

It is also straightforward to generalize to a
weak ferromagnet, where both Z~ and Z~ are
nonvanishing, although then (8) is no longer a
good appl oxlmation to Zo~.

We believe that this theory is highly relevant
to an understanding of real transition-metal mag-
netism, in the context of a more realistic band
structure. A detailed application to ¹iis in pro-
gress, together with treatments of the finite-q
Ward identity and the weakly ferromagnetic case.
They will be published elsewhere.

We are indebted to Professor P. %. Anderson,
Professor S. Doniach, Professor J. R. Schrieffer,
and Professor E. P. Wohlfarth for many enlight-
ening discussions of these ideas.

*Work supported by the U.K. Science Research Coun-

cil and the U. S. Air Force Office of Scientific Besearch
under Grant No. 1052-69. Part of this work was begun
while this author was at the University of Pennsylvania,
supported by the U. S. National Science Foundation.

~T. Izuyama, D-J. Kim, and B. Kubo, J. Phys. Soc.
Jap. 18, 1025 (1963).

J. Kanamori, Progr. Theor. Phys. 30, 275 (1963).
T. Izuyama and B.Kubo, J. Appl. Phys. 35, 1074

(1964); W. Brinkman and S. Engelsberg, Phys. Hev.
169, 417 (1968).

L. C. Davis and S. H. Liu, Phys. Rev. 163, 503
(1967); J, Appelbaum and W. Brinkman, Phys. Bev.
188, 558 (1969).

~P. W. Anderson, Phil. Mag. 24, 203 (1971).
6U. Brandt, Z. Phys. 244, 217 (1971). Brandt also

proposes a renormalization of the interaction to put
the pole of y in the right place. His approximation cor-
responds to complying with the Ward identity (4) in an
averaged-over-P sense. That is, assuming y indepen-
dent of p and q, multiplying (4) by Gi(p)6 t(p-q), and
integrating over P leads directly to his approximation
for p,

Y, Takahashi, Nuovo Cimento 6, 871 (1957); J. B.
Schrieffer, Theory of Superconductivity (Benjamin,
New York, 1964), pp. 228-281.

8D. M. Edwards, J. Appl. Phys. 89, 481 (1968).
9Yu. A. Izyumov, F. A. Kassan-Ogly, and M. V.

Medvedev, J. Phys. (Paris), Colloq, 32, Cl-1076
(1971).

Upper Limit on the X-Ray Flux Associated with Gravitational Radiation*

G. A. Bairdj'
SAnon I"raser University, Burnaby 2, British Columbia, Canada

M. A. Pomerantz
Barto/ It essay oh Foundation of The I'rankfin Institute, Suparthmore, Pennsylvania 19081

(Received 28 March 1972)

An upper limit in the x-ray Qux accompanying pulses of gravitational radiation has been
determined with relatively simple balloon-borne apparatus. The minimum detectable flux
in space, approximately 2 x 10 erg/cm event, is about 9 orders of magnitude below the
energy flux which produces the gravitational signals observed by Weber. Furthermore,
it is lower than that attainable with the much more elaborate and difficult ground-based
methods which have been. suggested so far.

Following%cher's reports'' of evidence for the
discovery of pulses of gravitational radiation, at-
tempts to detect associated electromagnetic radi-
ation have been made in the vhf (151 MHz) 4 and
microwave (19 GHz) ' radio frequency bands.
Field, Bees, and Sciama'pointed out that it
might be fruitful to scan the records of orbiting
y-ray detectors for pulses of photons, into which
it seems plausible to suppose that an appreciable

fraction of the energy of a collapsing object would
go. Jelley' has recently called attention to the
sensitivities that might be attained by utilizing
the ground-based upper-air x-ray fluorescence
technique for detecting such emissions in the x-
ray band, while Baird and Francey' have suggest-
ed that it may be possible to detect the ionospher~
ic effects of such x rays.

In this Letter, we point out that long-duration


