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determined accurately only to the lowest order.
The discovery made in the present work offers us
a way to overcome this Jastrow barrier. Such a
method is currently being applied to investigate
properties of the weakly interacting Bose gas,
and more importantly liquid helium. The results
will be reported elsewhere.
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We show that previous calculations of the loss rate of ions from toroidally symmetric
line cusps need substantial revision. The symmetry of the toroid produces a conserved
generalized momentum which prevents a certain class of particles from penetrating the
n1lrrorlike magnetic fields which exist above the cusp points. The importance of this re-
duction in loss rate is explained for several geometries including Tormac which can now
have a loss rate substantially smaller than a mirror device.

Previous calculations of the loss rate of ions
from toroidally symmetric cusp, magnetic con-
tainment geometries are based on the existence
of a hole in physical space at the cusp line through
which ions can rapidly escape. ' A substantial
correction to this rate is needed because a trans-
lationally symmetric geometry, like an infinite or
toroidal line cusp, produces a conserved gener-
alized momentum. This prevents some ions from
aligning their velocity vectors closely enough with
the magnetic field direction to go through the
larger, mirrorlike magnetic field, which in prac-
tical systems exists above the cusp lines. Such
malaligned particles cannot escape from the plas-
ma until the conservation of momentum is broken
by collisions or instabilities. Consequently, the
time constant is controlled by these relatively
slow processes. The conservation of a general-

ized momentum in such symmetric geometries
has been previously discussed, but its implica-
tions have not been fully exploited'; probably be-
cause the time constant of a spindle cusp, which
is usually treated, is not affected by the conserved
generalized momentum.

To find the conserved generalized momentum
we consider coordinates

X =(R+x) cosg,

Z =(R+x) sin(,

where X, Y, and Z are the Cartesian coordinates,
R is the major radius of the toroid, the angle f
is measured around the major circle of the sys-
tem, and the cusp is in the x-y plane (see Fig. 1).
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FIG. 1. Toroidally symmetric four-pole cusp. Shaded area indicates trapped plasma with totally enclosed toroi-
dal magnetic field Bq.
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Since the vector potential is independent of g, the
Lagrangian is independent of g, and the g compo-
nent of the generalized momentum

Pq = M /8&=m(R+x)'y+e(R+x)A~(x, y)

is conserved.
In the interior of the cusp there is no magnetic

fieM component in the x-y plane, and Eqs. (6)
and (7) imply that in this region

A~-—a/(R +x), (io)

where a is a constant. Putting this expression

The line element in the toroidal coordinates is

dr' = dx'+ dy'+ (R +x)'d y',

and the Lagrangian is

L = —,
' m[x2+y'+(R+x)'q']+exA„

+eyA, +e(R+x)gA&,

with A„, A.„and A.
& being the components of the

vector potential; B=VX A.
The toroidal symmetry of the system implies

that the magnetic field is independent of (. It is
possible to construct the vector potential of such
a field without any ( dependence. The three com-
pononts of the magnetic field are given by

s(R+x)A, », (x, y)
R +x By &y

for the vector potential in Eq. (9), we have

(R +x)'g = const

in the cusp interior. If we let 0 be the angle be-
tween the g axis and the velocity of the particle,
and remember that the magnitude of the velocity
is conserved, Eq. (11) implies that when a parti-
cle is in the interior of the cusp

cos 0 = ft/(1+x/R),

where b is a constant. We should stress that in
the collisionless limit each and every time a par-
ticle leaves the plasma region to enter the sheath,
or whenever it crosses a line where 4& = 0, it has
the same value of b.

In the cusp geometry the plasma is bounded by
surfaces of constant magnetic intensity B„but it
is possible, and in fact usual, for the magnetic
field intensity to increase along the field lines
above the cusp points to some maximum value
B „.Particles which penetrate beyond the cusp
lines will be reflected by a magnetic mirror back
into the cusp region if the angle its velocity
makes with the magnetic field is greater than n,
where

cos n = (B „-B )/B

In the usual mirror geometry a particle once re-
flected continues to be reflected because its mo-
tion is adiabatic. The toroidal cusp system dif-
fers in that a reflected particle may again try to
penetrate the magnetic mirror after nonadiabatic
motion in the sheath or the main plasma. How-

ever, the fact that the g component of the gener-
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alized momentum is conserved means that the
particle motion, though nonadiabatic, is not arbi-
trary.

To explore the implications of this statement,
we now consider a more specific model; although,
we expect that our main result is substantially
model independent. We assume that the plasma
is separated from the vacuum region by a sharp
boundary. In this approximation, a particle can
only leave the plasma by cutting an A& = 0 surface
near the cusp line. We further assume that out-
side the boundary the scale of the variation of the
magnetic field is much smaller than the ion gyro-
radius. This allows us to use the magnetic mo-
ment as a good adiabatic invariant from the in-
stant the particle is outside the main plasma re-
gion; moreover, using the total instantaneous
perpendicular velocity to evaluate the adiabatic
ipvariant instead of averaging over a period will
only lead to a small error.

In the cusp region a particle can experience a
VB xB drift. We assume that this drift velocity
is small enough to be ignored in the numerical
evaluation of the adiabatic invariant. On the
other hand, with a B& present the drift is such
that upon reflection from the high-B region the

particle may drift away from the A& =0 line and
not re-enter the main plasma at the same point
it left. In this case, however, the particle will
pass along the sheath and re-enter the plasma
through a neighboring cusp. This can be seen
if we assume the particle motion is adiabatic dur-
ing the entire excursion outside of the plasma and
along the sheath. Than, in the guiding-center ap-
proximation, the VBXB drift away from the A&
=0 surface at one cusp is balanced by a VB XB
drift toward the A& =0 surface at the second cusp.

Thus, to escape, the particle must move along
an open field line with its velocity within the an-
gle o. of the magnetic field [Eq. (13)]. It is easy
to see that this implies that 8„ the angle between
the particle's velocity and the g axis when it
crosses into the adiabatic region, must be in the
range'

y- n «8, «y+n,

m —(y+o.) ~ 8, &v —(y —o,),
(14)

where y is the angle the B field makes with the g
axis at the cusp' (see Fig. 2). Since 0, has the
same value as 0 in the adjacent interior region of
the cusp (A.

&
is continuous at the boundary), Eq.

(13) tells us that only certain particles can ever
satisfy relation (14); the rest must remain trapped
in the plasma region until they suffer a collision
or an instability develops.

If we let P be the fraction of the sphere of pos-
sible velocity directions which contains particles
that cannot escape, and let D be the distance be-
tween the furthest cusp points in the x direction,
then from Fig. 3 we can see that'

coso coso
1 —D/R 1+D/R'

FIG. 2. Diagram of velocity space attached to a point
on a boundary magnetic field line. Shaded area indi-
cates trapped region.

with ~, =y- u and H, =y+n. In Fig. 3 we have
plotted curves of constant P for the case in which
D/R is negligibly small.

In order to apply these results we must note
that there are two time constants associated with
a cusp geometry. One time constant, r, is de-
rived by using the model of Grad' as refined by
Grossman' and applies to the region of phase
space where particles can escape the cusp with-
out a prior particle collision. The other time
constant, 7„ is applicable to that portion of
phase space where particles are trapped and de-
pends on the volume in phase space and the col-
lision frequency. An approximate expression is
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balanced by cross field diffusion from the plasma
in the central region. On this basis a sheath
thickness can be calculated, yielding a sheath
narrower than the ion gyroradius. To be realis-
tic, it is then safer to estimate the minimium
sheath width as the ion gyroradius.

The time constant for the Tormac geometry is
now given by multiplying the time constant for
particle loss in the sheath by the ratio of the vol-
ume of the device to the volume of the sheath.
Thus
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FIG. 8. Curves of constant I', the fraction of the
sphere of velocity directions which cannot escape; p is
the angle the magnetic field makes with the minor axis
of the toroid, and sin 0. is the inverse of the mirror
ratio.

where D is the minor diameter of the device and

r; the ion gyroradius.
In conclusion, the simple toroidally symmetric

cusp with the assumptions discussed above' has
a time constant of the same order of magnitude
as a mirror device of the same size; the Tormac
device has a time constant which is size depen-
dent and longer than a mirror device. In a Torm-
ac built for controlled thermonuclear fusion, D/
r, could be as large as 100, which implies a time
constant with a similar factor larger than that of
a mirror device.

where v';, is the ion-ion collision frequency and

P is calculated from Eq. (15). In most cases of
interest 7, »v and therefore dominates. We are
thus led to the conclusion that the time constant
for the simple toroidally symmetric line cusp
without an axial field is of the same order as that
of a mirror device, although microinstabilities
might alter this conclusion. The situation is,
however, different in the Tormac4' geometry:
Because of the presence of the trapped B& field,
a time constant much longer than either for the
mirror device or for the simple cusp results.
In this geometry the outflow from the sheath is
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