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A new method for determining planar continuum potentials from planar channeling data
has been developed. Preliminary experiments have been done for 1.8-MeV & particles
in [111]gold planar directions from which the continuum potential has been deduced.

During the past several years the experimental
observation of fine structure in the energy loss
of planar-channeled particles having specific tra-
jectories in transmission through thin crystals
has been exploited by several authors'"' in an at-
tempt to characterize the detailed motion of the
penetrating particle and associated phenomena.
Of particular importance in such studies is the
planar continuum potential" since this function
serves as the starting point for more detailed ex-
perimental and theoretical investigations of chan-
neled particle properties. In this Letter we re-
port on a new and direct method of obtaining the
continuum potential from the analysis of planar
channeling data.

This approach to determing the continuum po-
tential is based upon the realization that for a
symmetric one-dimensional anharmonic oscil-
lator of known mass, knowledge of the oscillation
period as a function of the total oscillator energy
is sufficient to uniquely deduce the potential func-
tion responsible for the motion. " The pioneering
work of Datz et al. ' showed how the wavelengths
of the transverse motion of planar-channeled par-
ticles can be determined in a straightforward
way, from which the period of the transverse os-
cillations follows directly. In this work we show
a direct method to extract the energy of the trans-
verse motion, which together with the wavelength
measurement provides enough information to

uniquely determine the continuum potential neces-
sary to describe the transverse motion of the
channeled particle.

Briefly reviewing the experimental procedure,
after the planar-channeled beam emerges from a
thin crystal, it is energy analyzed with a masked
solid-state detector having an angular resolution
of -2.5&10 ' sr, positioned in line with the inci-
dent beam. Under these conditions the particles
recorded by the detector are mainly those whose
trajectories have undergone an integral number
of wavelengths in the crystal. ' If the detector
has sufficient energy resolution, particles having
different numbers of wavelengths in the crystal
can be distinguished since each has a character-
istic energy loss rate, corresponding to different
amplitudes of oscillation in the channel. A sche-
matic illustration of the trajectory selection prin-
ciple is shown in Fig. l. (As can be seen from
this figure, the wavelength of the motion of a par-
ticular group can be determined by experimental-
ly increasing the crystal thickness L until anoth-
er group of an equal energy loss rate is found.
The increase in thickness will be 1 wavelength
for those groups. ')

For this detector geometry, changing the angle
between the crystal plane and the incident beam,
keeping the crystal thickness along the beam di-
rection constant, has the effect of changing the
populations of the various detected wavelength
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FIG. 1. Possible trajectories of planar-channeled
particles. The two trajectories shown entering the de-
tector satisfy the boundary conditions that exit and en-
trance angles at the crystal boundary are equal.
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groups. A calculation of group population as a
function of g, the angle between the incident
beam and the plane, indicates that for a perfect
crystal"

n, ~(dV/dy~„, ~& ~) ',
where n, is the population of the jth group, y is
the distance from the midplane position, and V

is the planar continuum potential. The derivative
is to be evaluated at the point y, at which the par-
ticles in the jth group enter the channel. As P
increases from zero, y, decreases from A, , the
amplitude of the group, to zero. At y» equal to
zero, the slope of the symmetric potential must
be zero, and n, goes through a strong maximum
at the corresponding g =g„,„. For g„&P ~, in

a perfect crystal the group can no longer be pop-
ulated. Experimental measurements of group pop-
ulation as a function of incidence angle, as shown
in Fig. 2, fit this description except for smooth-
ing of the expected sharp angular dependence in
the region of large n, , due to.mosaic spread, and
multiple scattering. When the population of a par-
ticular group is maximized, entry into the crys-
tal for those particles occurs at midchannel, i.e. ,

yp, = 0, and, satisfying the condition of integral
number of wavelengths in the crystal, the parti-
cles also exit at y» =0, where the transverse ki-
netic energy is a maximum. The transverse en-
ergy E j inside the crystal is given by

E~=Eg„'+ V(yo),

where E is the beam energy, and g„ is assumed
small. Thus, referring energy to the potential of
y=0,

E~=Etji~,

where g„, is the angle that maximizes the group
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FIG. 2. An angular scan {solid curve) of a group hav-
ing three complete oscillations in the fill] plane of a
gold sample tilted to a thickness of 2750 A. The inci-
dent beam consisted of 1.8-MeV ct'. particles. Also
shown {dashed curve) is the least-energy-loss group
whose transverse energies are so small that a contin-
uum of wavelengths is detected about the zero-trans-
verse-energy wavelength. The peak population of this
group serves as an angular reference. The scales for
the two plots differ by a factor of 8, with the central
group being the more intense.

population.
With these techniques one can obtain the wave-

length of oscillation as a function of the trans-
verse energy. By changing the thickness of the
crystal along the beam direction, one changes
the wavelengths of the detected groups, and thus
each different thickness measurement yields ad-
ditional evaluation points for the desired wave-
length-transverse energy function.

The method of extracting the potential function
proceeds as follows. A wavelength function A. (E,
V) is chosen that fits the data best in a least-
squares sense. ~ is to be considered a function
of E and a functional of the transverse continuum
potential. The dependence of A, upon the potential
function is represented by the parameters a„a„
~ ~ ~, a„ Ii.e. , A. (E,a„a„~~, a„)], where the a's are
chosen by the least-squares criterion. (The
choice of A. requires more detailed discussion to
which we will return shortly. ) One can then ob-
tain the inverse of the potential via the transfor-
mation'

y(V)=(8~'m~ ) "f, z(E.)(V E.) ''dE. , (l)-
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where v& is the velocity of the beam along the
channel direction.

For A. (E,a) it is desirable to choose a function
that fits the data with the least number of adjust-
able parameters and represents a physically rea-
sonable potential whose parameters can be given
some easily interpretable physical significance.

For the present analysis we have used

X =A. (2/m)(1+4I'B) 'i'K[ ' ——'—(1+41'B) "'], (2)

with A0=2wvz(M/a, )' ', I =Er/E~~, B=E~a2/a, ',
K the complete elliptic integral of the first kind
(see Milne-Thompson" ), and E ~ only inserted
for normalization purposes. Transformation of
this function results in a potential function,

V = 2&1~ + 4+2
4
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Equation (2) is more easily obtained from Eq. (3)
than vice versa.

This A. function is attractive since the param-
eters a„a, have a simple physical significance in
the potential function which is of a fairly general
form. (The next term to appear in the power-
series expansion would be a, y' since V is sym-
metric about y =0.) In the final analysis we can
judge how good a choice of A. we have made by
examining the fit to the data.

Plotted in Fig. 3(a) is A. /X, of Eq. (2) versus
I'=E /E for different values of B=E,„a,/a, '.
E,„ is arbitrary and for convenience chosen as
the maximum observed transverse energy. In
Fig. 3(a) we also show experimental results for
1.8-MeV n particles channeled through a 2500-A
gold foil along the [111]plane. These results are
well reproduced by the fitting function Eq. (2) for
AD=1408 A and E,„a,/a, 2=3.61 with E,„=103.5
as shown by the solid curve of Fig. 3(a). The re-
sulting coefficients of the potential are ay 7i 6
*4.6 and a2 =179+26. The uncertainties are con-
servative estimates based upon experimental un-
certainty in the crystal thickness and the trans-
verse energy determinations. The value of Qy can
be compared with a value of 75 obtained from the
curvature parameter deduced by Robinson' from
energy loss measurements and an empirical re-
lationship between the frequency and energy loss.
The measured potential distribution is shown in
Fig. 3(b) and is compared with the planar poten-
tial derived from the Moliere approximation to
the Thomas-Fermi interatomic potential. '

We would like to emphasize at this point that
the method presented in this work represents a
deduction of the potential function that is consis-
tent with the original model' for the explanation
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of group structure in energy loss experiments of
this type. This approach to determining the po-
tential function has the advantage of not relying
on any assumptions about stopping power, as
have been used in previous analyses (see Refs.
4 and 7), and thus gives the study of the motion of
channeled particles a more fundamental founda-
tion upon which discussion of other properties of
channeled particles (stopping power, multiple

FIG. B. (a} Values of X/Ao versus iE/ ~E~ for various
values of B are shown in the solid and dashed curves,
which are read on the left-hand and bottom axes. The
data and fit by the solid curve are read on the right-
hand and top axes. & = 0 corresponds to a harmonic
oscillator potential, where the wavelength is indepen-
dent of transverse energy. The data are for 1.8-MeV n
particles in [111] Au channels. (b} The interplanar
continuum potential for [111]planes in gold obtained
from the fit shown in (a}. The experimental value of
the potential is normalized at y =0 to theoretical inter-
planar potentials calculated from a Thomas-Fermi in-
teratomic potential, which are shown for comparison.
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scattering, flux peaking, etc. ) can be built.
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by P. Ambrosius-Olson of Aarhus University.
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Generation and detection of ultrasonic spin echoes (phonon echoes) and of ultrasonically
induced rf magnetic field spin echoes are reported. With the latter, signal-to-noise im-
provements of 2 orders of magnitude were found over direct ultrasonic absorption spec-
troscopy. The effects of momentum conservation selection rules are discussed, as are
properties and applications of the various echoes.

%'e report the first observations of ultrasonic
spin echoes (or phonon echoes), and of ultrasoni-
cally induced rf magnetic spin echoes. The ultra-
sonic spin echoes are generated following two-
pulse sequences which consist of either two ultra-
sonic pulses (UU echo), or an ultrasonic pulse
followed by an rf magnetic field pulse (UH echo).
Ultrasonically induced rf spin echoes are generat-
ed by three-pulse sequences consisting of two
ultrasonic pulses and an rf magnetic field pulse
in any order (UUH, UHU, HUU echoes); these
are stimulated echoes. ' As discussed below, the
form an echo takes (i.e. , whether ultrasonic or
magnetic), and its propagation direction, are
determined by momentum conservation selection
rules. 2 UU echoes are analogous to photon echoes, 3

and propagate in the forward direction (with re-
spect to the ultrasonic pulses); UH echoes propa-
gate in the backward direction. Ultrasonic spin
echoes are of interest because their temporal
decay measures the relaxation of off-diagonal
components of magnetoelastic stress, whereas
the decay of magnetic (HH) spin echoes' mea-
sures the relaxation of the off-diagonal magneti-
zation. The relaxation time constants are not
equal when the dominant spin-phonon coupling is
quadratic in the spin operators, as is usual for

non-Kramers ions. Therefore UV or UH echoes
complement HH echoes in obtaining a complete
description of paramagnetic relaxation processes.
They should also be of use in the measurement of
spin-phonon coupling constants. We believe the
stimulat'ed echoes can make ultrasonic paramag-
netic resonance a more important adjunct to other
EPR spectroscopic techniques than it has been
heretofore, since we have observed signal-to-
noise improvements of 2 orders of magnitude
over direct ultrasonic absorption measurements
on weakly coupled ions. In addition, they can be
observed simultaneously with other EPR mea-
surements in the same spectrometer.

The experiments were performed at 9 0Hz on-

paramagnetic ions in concentrations = 10 ' in
MgO crystals a.t 1.8 and 4.2'K. The measure-
ments reported here utilize 1.75-cm-long quartz
transducers bonded to MgO crystals = 1.25 cm in
length, although our first observations were
made using thin-film ZnO transducers deposited
directly on the MgO, The ultrasonic measure-
ments were of the reflection type; i.e., the gen-
erating cavity resonator (with the usual re-en-
trant configuration) also served as detector rf.
magnetic field pulses were applied via a rectan-
gular, dielectric filled, TEpy2 cavity resonator
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