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obtain s4

I'(E' i-i'ii'e'v) =(1.59x10' sec ')if, i', (2)

the experimental results are compatible with the
AI= —,

' prediction given by Eq. (1).

where f, is the axial-vector form factor multi-
plying the sum of the pion momenta in the matrix
element. Another result of the hI=-,' rule is that

f, for the decay K'-iiniine'v is equal to the f, for
the decay K'-7T'm e'v.

From Eq. (2), the result of this experiment can
be expressed as

The results of this experiment are in good agree-
ment with the predictions of the AI= 2 rule. Our
value for the magnitude of f, agrees with the
value of 1.19+ 0.13 obtained by Berends, Don-
nachie, and Oades, ' from an analysis of K'
-7t'n e'v data. The experimental K' -~'~ e'v
branching ratio is reported' as (3.3+0.3) x10 '
and in a, recent experiment' as (4.11+0.38) x10 '.
Since a small rate for K'-7T'm e'p is predicted
by several theoretical models for E.,4 decays, '
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Speculations are made concerning the fluctuation in the multiplicity in the fragmenta-
tion. of hadrons in high-energy collisions. We analyze implications for the two-particle
distribution function p& and higher-order distributions pp.

The aim of this Letter is to stress the impor-
tance of the possible phenomena of wide multipli-
city fluctuation in high-energy collisions and to
speculate on some possible characteristic be-
havior of the two-particle distribution function.
The subject is of immediate interest because a
basic general feature of a number of current
models in multiparticle production (statistical
models, multiperipheral models) is the rough in-
dependence of the outgoing particles. This basic
feature does not allow for a wide fluctuation of
the multiplicity. On the other hand, the hypothe-
sis of limiting fragmentation does, since fragmen-
tation into very few fragments is envisaged as
having a finite probability at very high energies,
while the average multiplicity continues to in-
crease with incoming energy,

We shall concentrate on discussing the charged-
pion multiplicity n, h since that is the simplest

/(P li )incoming v (2)

where p i~* denotes the 1.ongitudinal momentum in
the c.m. system. The hemisphere R is defined
to be the one for which x is positive. For sim-
plicity we shall integrate over all transverse mo-
menta and concentrate on da/dx„d o/dx, dxs, eic.
and their limits at very high incoming energies:

(da/dx, ) dx, —p, (x,) dx„

(d2a/dx, dx2)dx, dx2 —pm(x „x2) dx, dxm

(3)

(4)

quantity to measure experimenta11y. Define

Rn h=n h +n h,
where R and 1. refer to the right and left hemi-
spheres in the center-of-mass system for the out-
going momenta. We shall use the variable x de-
fined by
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etc. These are relations that follow from defini-
tions and are true, independent of any specific
assumptions.

Such quantities like ((nd, ~)'& and (n') are clear-
ly related to multiplicity fluctuations, e.g. , ((n
—(n&)') =(n'& —(n)'. Through Eqs. (6), (7), and
their generalizations, one can also relate fluc-
tuations to the two-particle distribution functions
d(T/dx ~(fx2.

According to the hypothesis of limiting fragmen-
tation, for a fixed n,z", the cross section o(n, h )
approaches a limit at high energies. Assuming
that (n,„")increases linearly with lnE;„„;„g, it
is natural to assume

lim v(n, z") =const (n,&s) 2

~inc

for large n,h". (8)

Speculations in this spirit lead us to the following
guesses about multiplicity fluctuations and about
the distribution function do'/dx, dx, :

(a) The multiplicity fluctuation for the fragmen-
tation of either hadron in the collision is large.
If one tries for a power fit at high energies,

&(n,g")'& ~ (E;.,),
one easily proves that a & —', if (n,h&~lnE;„, .
Equation (8) suggests that

Similarly, one can discuss the higher moments
of ~ch:

&(n,h")'& ~ (E;., ) '.

Let x„x, refer to charged pions. (If the experi-
ment is more specific, one can discuss the case
when x refers to v 's, or to protons, etc. ) It is
clear that

f, (dv/dx, )dx, = v, (n,„"&,

f,(do/dx, ) dx, = vr(n, „i&,

f, f, (do/dx, dx, )dx, dx, = or(n, h" (n,„~—1)), (6)

g f, («/dx, dx, ) dx, dx, = or( ning n gh &p (7)

x, &0, m (x,)-a finite limit as E-~,
x~&0, m (x~) ~ as E

(12)

(13)

Statement (13) is easy to believe since the emis-
sion of a particle in the left hemisphere (x, &0)
is not expected to greatly affect the average mul-
tiplicity in the right hemisphere. In other words,
one expects that, in fact, for

x, &0, m (x,)=-{n„"), (13a)

which would imply (13). On the other hand, (12)
represents a deviation~ from the "independent-
emission" type of concepts. What are then the
reasons for the guess (12)? To answer this ques-
tion let us remind ourselves first that (n,&

"& be-
comes increasingly larger at higher energies be-
cause o(n,„")does not vanish sufficiently fast for
large n,„"[cf., e.g. , (8) for which the relevant
point is that

In particular,

(n „"n.,~&/(n, „"&(n,„&—1 as E —~.
If it is verified that indeed these statements

are correct, then at high energies ((n,h") ) is
much larger than (n,h"n, & ). Thus, the high mul-
tiplicity at small x should perhaps be interpreted
not as due to emission from some-amalgamation
of the two hadrons, but as due to the separate
fragmentation of the two hadrons, excited in
passing through each other.

If (10) is correct, it implies that the multiplic-
ity fluctuation is large within each hemisphere.
Measuring ((n,h)'), where n, h is defined in (1),
would seater dosen the large fluctuation within
each side, a point of some relevance if one wants
to study this question experimentally.

(c) Let us define

f, (dv/dx, dx, ) dx, = p, (x,)ms(x, )

m "(x,) is then the average number' of additional
charged particles in the right hemisphere (i.e. ,
x, &0) for all events where a charged particle
with x, is known to be emitted. We speculate that
for

We speculate that P=1. Notice that for models
where the independence of emission of outgoing
particles is a more or less essential element of
the basic picture, e = P= 0 if the average multipli-
city increases like InE~~ [We take lnE~, to be
(E;.,)'. ]

(b) The multiplicities of the fragmentation of
the two hadrons are not very much correlated.

is divergent]. But, if one insists on the condition
of one charged particle emitted in the right hemi-
sphere at x, &0, the relevant cross section o'(n, q")
will have to be reduced by a factor f(n,&",x, )
which depends on n,h". For very large n,h", the
condition Qx = 1 over all positive x will make the
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emission of a single finite x, very unlikely. Thus,
for large n, f(n, x,) decreases with n .A phase-
space argument easily leads to an n dependence
of the form

f(n, x,) =n(n —1)(1-x,)" (14)

m~(x, ) = constx, ' for x, =—0+. (18)

Notice that (13a) suggests that for x, &0, p, (x„
0+) has a singularity -constx, '. Thus p, (x „x,)
has discontinuities at x, = 0 and at x, = 0.

(e) We are of the opinion that at this time any

[See the mathematical model„discussed below in

(e).] Thus, Qo(n)f(n, x)(n —1) would be conver-
gent and we obtain (12).

Is (14) correct? It certainly is not exact. But,
we believe a strong damping factor like (1 —x,)"
is present for two reasons: (O Under what cir-
cumstances would f(n, x,) not provide a strong
damping factor as n becomes large? Only when
for fixed and large n, the partition Qx = 1 is such
that one (or a few) pions would essentially always
have a large x, while the rest would have x=O(l/
n). There seems to be very little theoretical
reason for such a peculiar partition. (II) Experi-
mentally, an examination of bubble-chamber pic-
tures for high-energy collisions shows that for
a multipion event there is no Persistent trend to
have such a peculiar partition. EThat part of the
single-pion distribution p, (x) which is at large x
comes from events with limited multiplicity n. ].

If we go to the limiting distributions (3) and (4),
we would have, according to (12) and (13),

1

,p, (x„x,) dx, = ~, x, « (16)
=a finite function of xy xy) 0.

(d) This last equation suggests that

p2(x„0+)=a finite function of x„x,&0. (16)

Indeed, the discussions under (c) that led to (12)
strongly suggest (16). The point is that the diver-
gence of p, (x,) as x, -0+ is due to high-multiplic-
ity events. In p2(x„0+) the specification of one
pion at x, damps the probability of the high-mul-
tiplicity event so that p, (x„0+) is finite. How
could (15) be in accord with (6) and (9)& Clearly,
the answer lies in the strong divergence of p, (0+,
0+). For example, one possibility is that it has
a singularity

p, (x„x,) = const(x, +x,) '
for x~= 0+, 2= 0+.

Further,

specific detailed theoretical models are of little
use except to illustrate some general qualitative
features. In this spirit one can construct a very
simple model' in which there is only one kind of
particle and, writing l for n", we assume, for
infinite energy,

v(l) =Kjl(l —1), l & 2 v(1) =0, (19)

p, (x)=ax ', o, =Z,

p, (x, y) =2K(x+y) '+KG(l -x —y),

for g &0, y&0,

m"(x) =x-~.

(20)

(21)

(22)

(f) All of the above points can be generalized to
p„p4 ~ ~ . Let us just mention that we speculate
that p, (x„x„~~, x, ) is finite inside and on the
boundary of the region x, & 0, x, & 0, ~ ~, x, & 0 ex-
cept at the origin. Near the origin it has a strong
singularity of the form

p„o=const(gx) ~" '~, x, &0. (23)

Does existing experimental information confirm
or contradict the above speculations & %e know
of no data which lend conclusive support to these
speculations, but because the mean multiplicities
observed in present-day experiments are so low,
definitive statements are not expected to emerge.
%e do wish to cite a few experimental statements
which, taken together, indicate to us that our
conjectures stand a chance of being correct.

(i) That the large-x portion of the single-pion
distribution p, (x) is contributed by events of lim-
ited multiplicity n is indicated by many experi-
ments. A particularly clear demonstration oc-
curs in Fig. 2 of Biswas et al. '

(ii) According to the reasoning outlined in (d)
and (e) above, p, (x, y) should depend on x and y
mainly in the combination x+y, when x and y are
in the same hemisphere. A strong qualitative
feature of experimental two-particle distribution
functions in a variety of reactions at several en-
ergies is indeed the constancy of p, (x, y) along
l.ines of fixed x+y when two particles are ob-
served in the same hemisphere. ' '

(iii) The discussion leading to (14) and the re-

which satisfies (8). We then assume that for giv-
en / the longitudinal momentum distribution is

(gdx, . )6(1 —Qx,.),
(i.e., strictly a phase space in x variables). The
computation of px, p2, etc. ~s straightforward, 4

yielding for this model,
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suits (20) and (21) imply that for fixed and small
values of x, (in the same hemisphere as x,),
p, (x„x,) is more sharply peaked near x, = 0 than
is p, (x), in agreement with the data cited in
(ii) above.

(iv) The rather low multiplicity data available
to us' are not inconsistent with the behavior sug-
gested by (13a) and (18) for the (right) hemisphere
associated multiplicity re(x)

(v) Our results (20) and (21) imply that at high
energies the so-called correlation function

C(x, y) = p, (x, y) —p, (x)p, (y)o

should behave as

lim C(0+, 0+ ) -+~.
~ inc

(24)

The existing data' ' indeed suggest tie develop-
ment of such a positive spike in C(x, y) with in-
creasing energy. In this connection we empha-
size that for many purposes it is useful to define
the correlation function in another way, namely,
as Z(x, y) = p, (x, y)/(or ')p, (x)p, (y). The diver-
gence discussed above is much stronger than that
in a model such as the multiperipheral model. "
The singularity of p, (x, y) near x =y = 0 is closely
related to (n'), as discussed above. We believe
that this singularity exists and is quite strong,
even if (n') should turn out to be not as large as
indicated by the guess (9). Also, we believe the
stronger dependence on the variable x+y than
x -y (when both x and y are in the same hemis-
phere), especially near the singularity at the
origin, is likely to be correct.

(vi) The existence of events with very large
multiplicities in cosmic rays together with the
slow rise of the average multiplicity with increas-
ing energy suggests that the fluctuation in mul-
tiplicity is large.
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