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known to + 100 keV. As in the previous case this
spectrum resembles the data obtained with the
('Li, t) reaction. ""Our results are consistent
with the assumption that the ('2C, Be) reaction
mainly populates two rotational bands (see Ref.
16, and references given therein): (i) the posi-
tive-parity band based on the ground state and
containing the 1.63- (2'), 4.25- (4'), and 8.79-
MeV (6') states. It has (sd)~ structure. (ii) The
negative-parity band containing the 5.80- (1 ),
7.17- (3 ), and 10.30-MeV (5 ) states. It has
(sd)'(fp)' structure. Both bands are expected to
be strongly populated by an e-transfer reaction. "

In summary, the ('2C, 'Be) reaction appears to
offer potential as an additional tool for the study
of ct clustering in nuclei —along with the ('Li, d),
('Li, t), and ("0,"C) reactions. Complications
due to mutual excitation processes are severely
reduced by a detection method that discriminates
in favor of observing Be in its ground state.
Through the use of wide-area detectors, the de-
tection efficiency of 'Be's could be easily in-
creased by a factor of 10. This technique plus
the availability of C beams of sufficient energy
and intensity at many tandem and cyclotron lab-
oratories should permit the study of the ("C, 'Be)
reaction on a wide variety of targets.

)Work performed under the auspices of the U. S.
Atomic Energy Commission.
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Possible Validity of the Relativistic Hartree-Fock Approximation in Nuclear Physics*
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Although nonrelativistic estimates of single-particle kinetic-energy expectation values
appear to have invalidated the Hartree-Fock relation between total binding energy, sin-
gle-particle eigenvalues, and kinetic-energy expectation values, a recent relativistic
Hartree calculation has been successful at reproducing finite nuclear properties for
closed-shell nuclei. Using the 0 nucleus, it is demonstrated that this success is due
to a reduction in the expectation values of the relativistic analog of the kinetic-energy
operator.

The difficulty of finding Hartree-Fock (HF) or
Brueckner-Hartree-Pock models which repro-
duce the experimental total binding energies and
charge distributions of finite nuclei has delayed
the establishment of a fundamental basis for the
shell model and optical-model theories. The

first important breakthroughs in this area came
with the exploitation of density-dependent (rear-
rangement) effects. ' These works reproduce sat-
uration propexties of finite nuclei, but the inter-
actions are essentially phenomenological, and the
density dependence induces significant deviations
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from a pure HF formalism.
The inadequacy of nonrelativistic HF theory for

nuclei was demonstrated by Kohler, ' who showed
that with nonrelativistic estimates of the kinetic
energies ((i I T I i)), the HF total-binding-energy
relation,

E= —2'Q)(E;+(i IT li)),

could not correlate the experimental total binding
energies (E) and single-pa. rticle removal ener-
gies (E;) as measured by (p, 2p) and (e, e'p) ex-
periments. ' If Koopmans's theorem' holds, the
needed equivalence between knockout energies
and single-particle HF eigenvalues is established.
The inability of Eq. (1) to correlate the experi-
mental data is a strong argument for the impor-
tance of rearrangement corrections of the types
used in Ref. 1. More recent experiments' have
served only to enhance this conclusion. '

A recent relativistic Hartree calculation, ' us-
ing a nucleon-nucleon interaction of the one-boson
exchange-potential' (OBEP) form, has indeed re-
produced not only the saturation properties of
closed-shell nuclei ("0-"'Pb) but also obtained

single-particle eigenvalues in agreement with the
knockout energies. This is an apparent contra-
diction of the arguments of the last paragraph,
for the interaction is density independent. In this
Letter it is shown that relativistic properties of
the OBEP interactions significantly reduce the ex-
pectation values ((i IT li)) when the relativistic
analog of the kinetic-energy operator is used.
The interaction used in Ref. 7 must also be con-
sidered phenomenological; however, the absence
of explicit rearrangement terms represents a
simplification of possible importance.

The ba, sic relativistic Hartree-Fock (RHF) for-
malism is presented in Ref. 7 and will be treated
with brevity in this section. The single-particle
wave functions (p„)which form the Slater deter-
minant of the nuclear ground state are

(2)

The functions 'JJ, ~ are Pauli central-field spin-
ors. The E„and G„are the large and small com-
ponents, respectively, which obey the radial Di-
rac equations

2M c'+ U, —U„'+E~
kc

dG U, + U„o —E„ i(U„"+U, ") (J+ 2)
dr bc Sc r

where the single-particle labels are dropped, except for the RHF eigenvalue E~.
The orbital-angular-momentum values differ between the large and small components in Eq. (2) as

follows:

J= l —~/2, J= l' + &u/2,

where 2 =+ 1 is a quantum number related to parity,

( )
J+ td/2

(5)
Note that v appears in the radial equations. The U's in Eqs. (3) are Dirac single-particle potentials
obtained by suitable averages over matrix elements of the OBEP interaction. As discussed in Ref. 7,
the terms U, and U„are the most important single-particle potentials, coming mainly from exchange
of scalar and vector mesons, respectively. The terms U„" and U, " come from HF exchange matrix ele-
ments (neglected in Ref. 7) and will not be considered here.

With this short introduction one can proceed to investigate the form of the relativistic expectation
value ((i I T li)) occurring in the RHF total —binding-energy equation. The relativistic kinetic-energy
operator is defined as the total single-particle Hamiltonian minus rest energy (Mc ) in the large-dis-
tance region where interactions with other particles have vanished:

T =cof P+(P —1)Mc, (6)

where the n and p are Dirac matrices. Using Eqs. (3) to eliminate derivatives, the relativistic expec-
tation value ((y„lT ly, )) may be shown to obey the following relation:

(y, ITI y„)= f [E„—U,(r) —U„'(r)]F '(r) dr+ f [U,(r) —U„'(r) +E,] G'(r) dr

+if, 2U, "(r)F(r)G(r) dr (7).
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The lowest-order approximation to Eqs. (3) is a Schr5dinger equation with the potential

V(r) = U,(r) + U„o(r). (8)

The first term of Eq. (7) thus has the appearance of a nonrelativistic kinetic-energy expectation value.
The remaining terms can be viewed as relativistic corrections.

The second term of Eq. (7) provides the major relativistic effects. Ordinarily this term would be
small, because the small component (G) is on the order of one tenth of the large component (E); how-

ever, the QBEP models have a distinctive property that invalidates this consideration. The QBEP
model central potentials result from large cancelations between the contributions of scalar and vector
mesons. This cancelation is necessary if one is to fit NN data without hard cores. In the RHF formal-
ism this property results in very large magnitudes for the single-particle potentials U,(x) and U„(r)
(-500 MeV). The scalar potential is attractive and the vector potential repulsive so that their appear-
ance with the same signs in Eq. (8) leads to a nonrelativistic potential well of reasonable depth (-50
MeV). In the second term of Eq. (I), these potentials occur with opposite signs, making them additive
rather than cancelling, and making the integrand significant despite the smallness of O'. The contribu-
tion is negative, thus reducing (cp IT I y).

Adherence to Dirac hole theory compels one to exclude from consideration the negative-energy eigen-
functions of the single-particle potentials; however, vacuum polarization causes the positive-energy
states in the single-particle potential to have small admixtures of negative-energy plane-wave solu-
tions. Using A+(W) and A (W) as the energy-dependent positive- and negative-energy plane-wave ex-
pansion coefficients,

y(r) = f dW [A+(W)g(W+Mc', r)+A (W)g(- W-~c', r)], (9)

where g are the plane-wave solutions, one finds the following relation for the expectation value:

(q IT iq) =j jA,+(W)A, (W)W-A *(W)A (W)[2Mc'+W]jeW. (10)

The negative-energy contributions to Eq. (10) can
be significant because of the factor (2Mc'+ W). Jn
fact, Eq. (10) shows that (y ITI y) is not even pos-
itive definite.

The results of calculations of kinetic-energy
expectation values of single-particle states in "Q
are shown in Table I. The experimental average
kinetic energy (T) is defined through a rearrange-
ment of Eq. (1),

T =(2E —Q)E))/A.

The (P, 2p) peak separation energies quoted by
Becker' are used for E, in Eq (11). A. Coulomb
correction of 4 MeV per particle' is applied to
neutron states, and a center-of-mass correction
of 0.'7 MeV per nucleon" is also applied.

The first row of Table I shows the results of

nonrelativistic calculations with the HQ model,
using Bethe's formula,

Se 1 85+35 5A-x&3

for the oscillator parameter. The second row
shows the results for a relativistic calculation
with a Woods-Saxon scalar well (U, ) with depth,
radius, and diffuseness of 60, 3, and 0.66, re-
spectively. For this case relativistic effects are
negligible as is shown by comparison with the
HQ result. The third row shows the relativistic
calculation with the QBEP model used in Ref. V.
Relativistic effects are very strong here as in the
fourth row which represents a relativistic calcu-
lation with the same model as row 3, but with ex-
change matrix elements included. The average

TABLE I. Kinetic-energy expectation values (MeV) of O.

&1&f/pl & I 1s,/, & &1P,/, I & I 1P,/, & &1P(/2I ~ I 1Pg/p)

HO
Relativistic WS Well

RH
RHF
Expt.

12
11.8
8.2
8.8

~ ~ ~

20
19.2
16.1
16.8

20
19.2
$.8
2.5

18
17.4
11.4
11.2

9.2+1.3
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FIG. 1. Large- and small-component radial wave functions for single-particle states in ~60.

matrix elements (T) in rows 3 and 4 are almost
within the error bars of the experimental quan-
tity (row 5).

Note in rows 3 and 4 of Table I that the relativ-
istic effects for the 1P», matrix element are es-
pecially large. This is because of a breakdown
of the order relation F & t" at small distances for
this state as is shown in Fig. 1 where the single-
particle radial wave functions are plotted (C,'ou-
lomb effects are negligible on the graph). The
reason for the breakdown is nondynamical, being
caused by the boundary conditions

Z(r) ~r" ', C(r) ~r' ",
and the fact that l' is less than l for the spin-or-
bit member of lower J. The effect seems to be
significant only if large relativistic effects are
already present.

It must be stressed that this work does not rep-
resent an attempt to prove that the HF approxi-
mation is sufficient for a quantitative understand-
ing of nuclear structure when relativistic interac-
tions are used. It is indeed likely that higher-or-
der corrections to HF including rearrangement
corrections play a significant role in nuclear
structure. The QBEP model of Ref. 7 does not
provide a satisfactory fit to NN phase shifts, al-
though it is closely related to models which do. '
Even if the NN data were reproduced it would
still be necessary to prove that two-body and
higher-order correlations are small before the
HF approximation could be fully trusted. The
lessons that have been learned from the RHF
work so far are: (1) Rearrangement and correla-
tion effects may be smaller than nonrelativistic

calculations have indicated; (2) they are not re-
quired to explain (P, 2p) experiments as had been
previously supposed; and (3) relativistic effects
may be larger than expected.
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The Coulomb correction for O was obtained by
averaging the difference between the neutron and pro-
ton eigenvalues obtained in Ref. 7.

This is the harmonic-oscillator (HO) center-of-
mass correction used in Bef. 7.
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