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emission was assumed, and a universal l-nsec
lifetime was taken to allow us to estimate the
fraction of the metastable emitters which decayed
within the distance viewed by our x-ray detector.
We thus have clear and direct experimental evi-
dence that both two- and three-electron chlorine
systems are produced which have lifetimes in the
nanosecond region and which de-excite at least
partially by Ke x-ray emission. We further find
that an appreciable fraction (about 60%%d) of our
metastable x-ray emitters belong to systems of
more than three electrons. The number of x rays
detected from these systems is large because of
the charge-state equilibrium at 45 MeV, in spite
of the small probability per emerging ion for
their production. The appropriate experiment to
detect these species directly in a coincidence ex-
periment is in preparation.

The identification of the charge states of these
x-ray emitters in no way settles the question of
their identity. Sellin et al. ' have attributed their
metastable Auger-electron emitters to quartet
states in three-electron systems whose autoion-
ization is inhibited by spin selection rules. They
further suggest that such systems may also exist
for higher electron number, and present possible
experimental evidence of their detection. Al-
though a more definite statement must await de-
tailed calculations of the lifetimes expected for
such states, we expect that the rapid increase
with Z of the spin-orbit mixing of doublet and
quartet states will mean that analogous states for
Z=17 will have lifetimes much shorter than nano-
seconds and thus are probably not the states we
observe. The consistency of the measured Kn

x-ray energy with that expected from a two- or
three-electron chlorine system, even though
more than half of the associated chlorine ions ap-
pear to survive with four or more electrons,
leads us to suspect that the states seen here may
be better attributed to metastable two-electron
systems which are accompanied by further elec-
trons residing in shells of very high principal
quantum number. Such a system would have to
owe its metastability against Auger processes at
least in part to the poor overlap of the wave func-
tion of the outer-shell electron with that of the in-
ner shells, and to slow radiative progression
from outer to inner shells by soft photon emis-
sion. Experimental observation of the radiation
which should accompany such a progression and
deduction of the overall excitation states of the
outer shells of foil-excited ions would clearly be
of importance in helping such an hypothesis to
emerge from the speculation stage.
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The 1s bound state of superheavy atoms and molecules reaches a binding energy of-~c at &= 169. It is shown that the X shell is still localized in r space even beyond
this critical proton number and that it has a width & (several keV large) which is a posi-
tron escape width for ionized K shells. The suggestion is made that this effect can be ob-
served in the collision of very heavy ions (superheavy molecules) during the collision.

The discrete energy eigenvalues for an electron
bound to a nucleus, which are obtained from the
Dirac equation, lie between moc' and —m,c',
where mo is the electron's mass. The problem
can be solved analytically in the case of a point

nucleus; the energy eigenvalues are then given by
the well-known Sommerfeld fine-structure formu-
la. In this case the eigenvalues for the 1s state
become imaginary when the nuclear charge 2 be-
comes larger than 137. The problem may be cir-
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cumvented by attributing finite dimensions to the
nucleus; still, the 1s energy eigenvalue becomes
equal to pplpc where the negative ener gy con-
tinuum begins, for a critical value, Z„=169.'
The exact value of ~ «depends on many assump-
tions concerning the potential in the vicinity of
the nucleus. ' The interpretation of the theory has
up to now been uncertain when the 18 eigenvalue
becomes equal to —mpc'. At this point the single-
particle theory seems to break down. Pieper and
Greiner' and later Popov' have interpreted this
to mean that electron-positron pairs are created
spontaneously.

It should be pointed out that this is not an aca-
demic problem, because even if superheavy ele-
ments cannot be readily produced, enough infor-
mation could possibly be gathered in the colli-
sions of heavy ions, such as Pb on Pb or Cf on

Cf, etc. ,
' to decide if electron-positron pairs are

created spontaneously. In these collisions the
adiabatic approximation should have some validi-
ty since the velocity of the electrons v, =c in the
inner atomic orbitals is much greater then the
relative nuclear motion v;, „=c/20. Thus during
the heavy-ion collisions the energy eigenvalues
of inner electrons will be steadily decreased (in-
creasing binding), until a critical distance is
reached where it becomes equal to —mpe'. Qf
course, the nuclei involved must have a minimum
charge, say Z =70-80, so that the adiabaticity
assumption is valid. It is also necessary that
Z, +Z &Z„. When the critical separation be-
tween the two ions, R„, is passed, it is expect-
ed" that the 18 eigenvalue "dives" into the nega-

H. I v) =E.
I v»=-m. c'I v». (2)

Further, let us consider the spherical s-wave
functions of the negative-energy continuum, i.e.,
the eigenfunctions of (2) with E &- m,c'; H, Ig~)
=E I yg. We solve now the "diving problem" of
the 1s level of H(Z„+Z') in the basis of H, (Z „).
In doing this we neglect the smaH influence of the
higher bound s levels and of the positive s-wave
continuum states (the next discrete states, 2p, ~,
and 2s, are separated by more than 200 keV from
the 1s state at Z =Z „). In other words, we di-
agonalize H(Z„+Z') of Eq. (1) in the restricted
basis given by I q) and by the negative continuum

Igg and obtain

tive- energy continuum.
Our search for a reliable method of calculating

this "diving" led us to consider the extent to
which it is analogous to the process of autoioniza-
tion as it was investigated by Fano~ in connection
with ordinary atomic bound states imbedded in a
continuum. I et D be the free-particle Dirac op-
erator. We then have to search for the bound
states of the Hamiltonian H =D+ V(~, Z),

H I 0 nl } Enl I Pnl }~

where V(r, Z) =Z U(x} is the "rounded-off*' Cou-
lomb potential. Its essential Z dependence has
been factored out for convenience. U(r) is only
very weakly dependent on Z via the extended nu-
clear charge distribution. Equation (1) can be
solved as long as Z ~Z„. For»Z«we write
Z=Z„+Z'; thus V(~, Z) =Z„U(r)+Z U(r). We
consider now the 18 bound-state eigenfunction
Ip) for Z=Z„. With Ho= D+Z„U(x) we have

&ylHI y) =E,+~„~.= &q I z'U(~) I y& =z'&q
I UI q»,

IHIP')=&0 IH. lv)+&II Iz'U(~)lq»=z'&y IUlq)=-v,

&(,-IH I(~ &=&)~-IH. I y~)+&), -lz'UI y, &=E'&(E"-E')+U - .

(3a)

The matrix elements U~-~' describe the rear-
rangement of the continuum states under the ad-
ditional potential Z'U(r). They can be neglected
in our discussion here. '

The solution of (3) for E &- mc' has, within
these approximations, the form

I +s) =a(E) I y) +J,b~.y~.dE'

with the coefficients a(E) and b~. as determined
in Ref. 4. The continuum functions l@g are nor-
malized in the usual way: &0'~I%'s)=6(E-E}. We

l ~pI'
IE —(E, +m,}-Z(E)]' m'IV, j"

E(E) =PfdE'I V, I'/(E-E')

and P indicates principal part. Ia(E) I2 has very
strong resonance behavior if r ) V~j'«Ep+~p.
We assume that & I V~ I

= I'/2 is approximately
constant. Then obviously F(E) =0 and we have a
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Breit-Wigner resonance shape,

Because we have chosen [ y) to be the bound 1s
eigenfunction for the critical charge, i.e., Eo
= —mc', bE =Z'(y I U(x) I y) = Z'& obviously de-
scribes the energy shift due to the over-critical
charge Z' of the bound state which has now be-
come a resonance spread over the negative ener-
gy states E with a width

(8)

%e thus can learn the following facts: The bound
level "dives" into the negative-energy continuum
for Z &Z„, proportional to Z'=Z —Z„. Then it
obtains a width I which is proportional to Z"
=(Z —Z„)'. The resonance occurs at

E=-m,c'-(Z-Z„)~.
The width F is caused by the admixture of the
negative-energy continuum states to the state I y).

It can be easily seen that our formula corre-
sponds closely to time-dependent perturbation
theory. The decay probability per unit time is
equal to m = I'/5, which gives with (8) Fermi's
"golden rule" exactly for transition from the state
[ y) to the continuum state ) gg (the density of
final states is equal to 1, since the ( gg are nor-
malized to 6 functions). According to this model,
the state I y) stays localized in r space during
the "diving-in" process. This means that the ex-
perimentally measured extension of the K-elec-

tron cloud decreases (the cloud shrinks) as Z in-
creases, even beyond Z „.On the other side,
there will be a certain energy "delocalization"
in the energy of the state ly) as expressed by the
width j.". This width corresponds to a decaying
state, if there is a nonvanishing final-state den-
sity. In the case that the Is state is not ionized,
nothing happens; both electrons will, in a heavy-
ion collision (Z, +Z, &Z „), dive into the negative
energy sea after the critical distance R„is
passed and emerge again when the heavy ions are
again separated by more than 8„.To a fully
occupied Is level there is no final state available.
The width I' of the K level in the negative-energy
continuum (which is occupied by electrons ac-
cording to Dirac) can in this case be understood
in analogy to the spreading width of a doorway
state. If on the other hand the Is state is ionized
(once or twice), spontanous positron creation
will take place. It is evident that energy is con-
served in this process. The production of the
electron-positron pair may be achieved without
any additional energy, because the Is state is the
final state for the produced electron, and the hole
escapes and is interpreted, according to Dirac's
hole theory as a positron with kinetic energy T

2 6=-E —inc .
According to Eqs. (7) and (8) the probability

P(T) dT for creation of positrons with the kinetic
energy T is

(2&) 'Z "ydTP(T dT

+ ITlpC
2

positive-energy continuum

2Pf/2

—le C
2

0
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FIG. j.. Atomic energy levels in dependence of nuclear charge. The spreading of the positron escape width for
the ls level is shown as a function of &'.
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which centers around ~ =Z'6. The numerical estimate of 5 and y gives 5=30 keV and y= 1.8 keV.
This is illustrated in Fig. 1. Equation (10) may be easily integrated,r, , 1 2(T —~) 2~

W(T) = P(T') d T'= — arctan —arctanI'

if 2~& I'or 26&Z'y, we obviously have W(~)
=1. This means that in this case a sharp reso-
nance occurs in P(T) for T=Z'0; most positrons
are created with this kinetic resonance energy. '
Furthermore the charge density of the shrinking
K shell, i.e., yq(v) j ",a*(E)a(E)dE, changes
continuously in the "diving" process. This means
the following: According to the wave function (4),
which describes the mixture of the bound state y
with the continuum gs, the latter is "deformed*'

by the former. The probability for finding the
state y is f ",a*(E)a(E)dE=1. Therefore, the
charge distribution of the K shell is still loca-
lized also, even though spread out in energy
(width I') after the "diving" process. In the op-
posite case, ~& I'or 26& 2'y, the results be-
come more complex, since the assumptions that
I' is energy independent and E(E) = 0 do not hold.
One can expect, however, that the kinetic-energy
spectrum of the positrons becomes rather broad.
Note that in the latter case the present model
should also be improved by incorporating the
threshold behavior of the Is state as it passes
through —moc'; in that case the continuum states
are strongly coupled to the 1s state even for E

moo 2

We remark finally that these considerations
are based on the assumption that effects such as
nonlinearities in the Dirac equation, etc. , which
could prevent the "diving" process, are not pres-
ent. However, for nonlinear electrodynamic ef-
fects as discussed recently, ' the conclusions
reached in this note are valid. In this case only
the critical charge Z„ is shifted towards higher
values. It is also assumed that quantum-electro-

I

dynamic effects (vacuum polarization, etc.) do
not become comparable to the "diving" effects
discussed here. Because the half-life of the E
hole in the negative-energy continuum is about
7=)t/I'=h/Z"y, the ions in the experiment must
be chosen such that Z' is large, so that 7 is
small compared to the collision time (large posi-
tron escape width). The escaping positrons will
then also have rather high kinetic energy (see
Fig. 1).
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