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E, and H„and that in the second case there are
no interference terms between the orthogonal
modes L, and R,. We thus conclude that the im-
age of the tangential focal line is a doublet, one
line having an E~ and the other an E~~ polarization,
and that the image of the sagittal focal /ine is al-
so a doublet, the tuo tines having opposite circu
lar polarizations inside the evanescent urave

One of us and co-workers' have proved experi-
mentally the first property, and we also hope to
test the second one soon.
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For a class of model quantum field theories in two-dimensional space-time describing
a neutral scalar boson field interacting in a region of length l, the vacuum energy density
converges as E ~. In the same limit the vacuum state approaches zero in the weak

sense, as proposed by van Hove.

We consider a self-coupled scalar field in two-
dimensional space-time with total Hamiltonian' '

a~ =&o+
r/2 (1)

V, = J, :P(y(x) ):dx,

where P(X) is a polynomial with real coefficients,
bounded below and normalized to P(0) = 0.

Our results are the following: (a) The vacuum
energy E, of H, has an upper bound linear in the
size l of the interaction region. (b) The vacuum
energy density o.'(l) = IE, I/l has a unique finite
limit when l —~. (c) The normalized approximate
vacuum 0, goes weakly to zero in the 4oK space
when I -~ (van Hove phenomenon'). These re-
sults hold in perturbation theory but they need a
proof independent of the perturbative expansion
because this is known to diverge in this case.

According to one of the methods previously re-
ported, ""we consider the representation of
the 4 ~v space as L'(Q, p), where (Q, p) is a prob-
ability space, the bare vacuum (no-particle state)
Q, is then represented by the function 1 on Q and

V, CL (Q, p), p &~. The Hamiltonian H, can be
defined as an operator essentially self-adjoint on
D(H, ) AD(V, ), with a unique eigenstate Q, of low-

est energy E,. With a convenient choice of nor-
malization and phase factor, one has IIQ, II, = 1,
Q, &0 almost everywhere on Q; and moreover
Q, CL~(Q, p,) for any p&~.' lf /&0, then Q, gQ„
E, & 0, and !I Q, II, & 1.

Lemma I.—Let H, and 0, be defined as above;
then the equality

(Q„exp(- tH, )Q,) = (Q„exp(- /H, )Q,)

holds for any t, l ~ 0. This result is due to Nel-
son'; we sketch a proof at the end of this note.
An immediate consequence of lemma I is the fol-
lowing.

Theorem I.—There are positive constants n
and P such that

E, & —o.l +P.

Moreover, the vacuum energy density o.'(l) = IE, I/
l has a unique limit when I -.

Remark. —The analogous linear lower bound
has been established by Glimm and Jaffe' and
plays a very important role in the control of the
infinite-volume limit of the theory.

Proof of theorem I.—Let P, be the projection
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operator on 0„' then one has

e~(- iE,)(Q„P,Q,) = (n„e~(- fa,)P,Q,)
- (n„exp(- fa,)n,)
= (Q„exp(- ta, )Q,)

- exp(- tE,).
Therefore, since (Q„P,Q,) = II Q, II,', then

—IE, +lnlln, ll,'- —fE,

and the first part of the theorem is established.
To prove the second part, let us define, for l

&0,

Then the previous inequality gives us

o.(f) - o'(f) -I 'P(f).

Now define

n„= supo. '(l),
l ~lp

for some l, &0. Because of the linear lower bound
on E„n„is finite. It is evident from (6) that

is an I, such that I(u, Q,) I, & 2e for any l &lo.
Therefore for l & l, one has l(p, Q,) I

& l($ —u, Q,) I

+ l(u, Q,) I& e, and the theorem is proved.
aemarks: (A) The falloff of IIQ, II, as I -~ can

be easily generalized. For any p, 1-p&2, and

any k &0, there is a. constant c(p; k) such that

lln, lf, -c(p;a)f '.
(B) A stronger statement follows from the as-
sumption that E,/l is not a constant. In this case,
using (4), it is very easy to prove that for any

p, 1 &p &2, there are constants n~ &0 and P~&0
such that

II Q, II, - ~, exp(- P, I)

(C) Using the Riesz interpolation theorem it is
very easy to prove that II Q, ll~ -~ when I -~, if
p & 2.

Now we sketch a proof of lemma I. The sim-
plest way is to exploit the connection between the
Euclidean theory of Markov fields and the Hamil-
ton formalism recently discovered by Nelson. '
Let g(f) [fg S(R')] be the Euclidean-Markov-
Gaussian field defined by the expectation values
E(g(f ) )= 0 and E(g(f)g(g) ) = S(f, g), where S is the
Euclidean propagator in two-dimensional space-
"time. "' T'hen it js not difficult to prove that

and the theorem is proved.
Our second main result is the following theo-

rem.
Theorem II.—The van Hove phenomenon hoMs

in I,', i.e., Q, —0 weakly in I '(Q, p) as l —~.
Proof of theorem II. Consider th—e eigenvalue

equation for l&0,

(ao + v,)Q, =E, Q„
and take the scalar product with Qo. Since Qo

&D(ao)&D(V,), aon0=0, and no=1 on Q, one gets

f, v, n, dl =E, lln, ll, . (8)

Therefore II Q, II,- IE, I

'
ll V, If,.

Now theorem I tells us that, for / large enough,
there is a constant o."&0 such that IE, I&a'l. On
the other hand, there is a constant c & 0 such that

II vill, '-«.
Therefore one has IIQ, II, -O as I -~. To com-
plete the proof it is necessary to show that (g, Q,)
-0 as l-~, for any PCI-'(Q, p). Since I "is
dense in I-' in the I.' norm, there is a uCI such
that lip —ull2&2e for a given e&0. But lim(u, Q,)
=0 because uCL "and IIQ, II, -O; therefore there

(Q„exp(- ta, )n,)

=Efexpf f f„':P(0(k)):d'ii) (12)

This formula can be considered as a version of
the well-known Feynman-Kac formula (see Ref.
9, and earlier references quoted there) written
in terms of the fields g. Lemma I follows im-
mediately from the invariance of the expectation
value under the Euclidean group E(2).

An alternative proof might possibly be obtained
using the I orentz invariance of the free theory
and the locality of the interaction.

Recently Osterwalder and Schra.der" have ob-
tained some general results which, in the partic-
ular case at hand, go in the direction of the proof
of the second part of theorem I. They have iso-
lated two properties [P and S, see (11) for the
definition] of the vacuum energy which imply the
uniqueness of the infinite-volume limit of the en-
ergy density. Property P is known to hold from
the work of Glimm and Jaffe'2; property 8 has
been proved" in a simplified model where the
free energy Ho is replaced by the number oper-
ator N.
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We investigated the missing-mass spectra at the 2m threshold in the reaction P+d- He
+X and searched for the resonance reported at a mass of 450 MeV using 2-GeV protons.
The shape of the missing-mass spectra below the g mass deviates from two-body phase
space and was similar to that obtained with 3-GeV protons. If a 450-MeV resonance
exists, the c.m. cross section for producing it in this reaction is less than 10.8 &10
and 5.7 X10 ~~ cm /sr with 2- and 3-GeV protons, respectively.

The reactionp+d- He'+X' has consistently
shown an enhancement in the missing-mass spec-
trum above the two-body relativistic invariant
phase space at the two-pion threshold. ~' The
similar reaction d+p —He +X' also shows an en-
hancement at a missing mass of 300 MeV and, in
addition, a bump at a mass of 450 MeV. To in-
vestigate both of these phenomena, the energy of
the Princeton-Pennsylvania accelerator was re-
duced from 3 to 2 GeV to increase the counting
rate and improve the mass resolution. This re-
duction in energy increased the He counting rate

by a factor of = 10 and improved the missing-
mass resolution (squared) from b, M = 0.023 +0.003
(GeV/c')' to AM'= 0.017 *0.002 (GeV/c')'.
equipment and technique used are the same as
previously reported' with the Jacobian-Peak
method and detection of only the recoil Hes.

The 2-GeV data [Fig. 1(a)] clearly show the in-
crease in cross section and improvement in re-
solution over the data taken at 3 GeV [Fig. 1(b)].
There are approximately 1500 events per 0.0075-
(GeV/c')' mass bin in the 300- to 500-MeV mass
range. The only allowed strong reactions that
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