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A criterion is developed for the Anderson localization of the one-magnon excitation
in a substitutionally disordered two-sublayer Heisenberg antiferromagnet. Assuming
nearest-neighbor exchange interactions, application is made to K(Mn~, Co~) F3 near
zero temperature. Taking, for simplicity, & =(J™J), a critical condition for
localization is found for all impurity concentrations, yielding good agreement with recent
experiments.

Recently, Buyers et al. ' presented evidence for localized spin excitation modes in the substitution-
ally disordered antiferromagnets, K(Mn, ,Co,)F, and (Mn, ,Co,)F,. They presented an empirical
formula for the relation between the critical energy for localization, and the impurity concentration.
They remarked that, "Although the general method of Anderson should in principle be applicable to
any disordered system, it is not clear how to extend the formalism ~ ~ to spin waves in an antiferro-
magnet. " This Letter extends Anderson's formalism' to that problem. We find a different form for
the localization criterion than that written down by Buyers et al. Our result is in agreement with their
data.

We begin with a Hamiltonian appropriate to a substitutionally disordered two-layer sublattice anti-
ferromagnet:

B =2+J„„f„'S„—2 EBB„QS,+ 2 p BPQS„,.

Here, m and n represent the lattice vectors on sublayers A and B, respectively; and J „, f, and H„
are the nearest-neighbor exchange interaction, spin vector, and anisotropy field, respectively (the
g factor is taken equal to 2). The Hamiltonian is second quantized using the linearized Holstein-Prima-
koff transformation. Apart from a constant term,

(2)IJ=QE„A„tA +QE„B„tB„++V„(B„A +A tB t),
m n mn

where the boson operator A t (B„t)or A (B„)creates or destroys a spin deviation at site m (n), re-
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spectively. The random quantities are defined by

E =2+„J „S„+2piiH„(c)S„, E„=2+ J' „S +2piiLJ„(c)S„, V „=2J „(S„S„)'im.

E and E„are the Ising energies required to create a spin deviation at sites rn and n, and are deter-
mined by the cluster composition of nearest neighbors. A concentration dependence of the anisotropy
field is explicitly allowed for.

To study the behavior of the magnetic excitation we create a spin deviation at site m, at time t = 0
and compute the probability amplitude that it will propagate to site m at time t. This is found from
the Green's function defined by

(+)(t) — t(gi g(t)eiHtB te-iHtA 1'ig)

We are particularly interested in G (t = ~) and define a delocalization (localization) of the excitation
by the requirement that G, ,(t=~) =0 (&0) in accordance with Anderson's criterion. These Green's
functions satisfy coupled equations of motion,

(4)

t(d/dt)G (t) = 5(t)5,+E G (t)+Q„V„„G„'&(t),
i(d/dt)G„~+)(t) = -E„G„'i(t)—Q V „G (t).

We have assumed for simplicity that (giA ~, A ig)=5 (Kronecker 6) and (giB„~A ig)=0, though
in fact the antiferromagnetic ground state is not completely aligned. This simplification is not es-
ential, neglecting only a small "background effect" unimportant for our purpose, but it materially
simplifies our analysis. With the use of a Fourier transformation,

(t) = (2iT) if G (E)e t&t dE G t+&(t) = (2') &J G &+I(E)e t&'tdE lmE —0+

(5) leads to the recurrence relation

G,(t) = —i(gi 9(t)et"tA e '"tA„,~ig), (8)

where 8(t) is the unit step function and ig) is the ground state. We also define an auxiliary Green's
function

(E-E.)G...(E)=~...-ZZ "", ""G. ..(E). (7)

For a pure crystal, (7) is readily solved in reciprocal-lattice space, leading to the well-known mag-
non spectrum E&=[E ' —(zV&)] ', where V=2JS, E =2zJS+2pttH„S, z is the coordination number,
and yi, =z Q „-exp(ik 5) with 5 the nearest-neighbor position vector. By iteration it follows from (7)
that

G„, ,(E) =[E -E„—V, (E)] ',

where the Anderson series V, (E) is given by

mpn nmp +g s~~g n
v v v. „( 1)v„.

m, 0 F12 @++„
-v (- s&v V (- 1)V V —l)Vmtn2 np mp +Q Q mtn2 n2m2 m2np np mp +
(E E )(E yE ) „(E—E )(E+E )(E —E )(E+E )

with Q meaning that the summation excludes the m, site. The most important idea of the Anderson
theory is that, if the above series converges at an energy point E given by the zero of the real part of
the denominator of (8), then V, (E) will have a vanishing imaginary part and the corresponding per-
turbed wave function will be localized aroung the site mp. However, V, (E) is a. stochastic variable and
one has to study this quantity in a probability sense. We consider a path of "length" 2L+1 [i.e. , the
(2L+1)th order term in (9) with 2L+1 running indices]. The major difficulty of treating this quantity
lies in the fact that the series may "visit" a same site repeatedly, thus causing serious correlation.
To avoid this difficulty Anderson' uses Watson's4 multiple scattering theory and resums the series in
such a way that no repetition of the same site in the path occurs. The price one pays is the introduc-
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tion of an additive term (defined as the correlation energy) in each of the energy denominators. This
complicates the problem greatly, although the effect of the additive term becomes small, according to
Anderson, if the ratio (q) of the transfer matrix element to the fluctuation of the random energy levels
(in our case r!=z ) is small. Therefore we study the following quantity, a typical term representing
a self-avoiding path in the resummed series (9),

T my&y n j m2 m2n2 71LmL +y2L (E-E.,)(E+E„,)(E-E.,) "(E E„,) ' (10)

where 2L»1 and correlation energies are neglected. The probability distribution function of T» is
most conveniently found by introducing a quantity X In(T2~) and computing, A(p) defined by

A(P) = f P(X)e' dX,

where P(X) is a normalized probability distribution function of 3'. We introduce a simplification of the
problem at this point by taking V " ' = (V 'Vc')'". This approximation was also made by Svensson
et al. for real exchange interactions and greatly simplifies the mathematics. In (11), A(P) is just the
average of the quantity e'~ . This average can be computed with the above approximation to arbitrary
accuracy in the limit L —~ for an arbitrary concentration (c) of Co ions accounting for all the possible
occurrences of the cluster composition of the nearest neighbors. As a result, the inversion of (11)
yields

P(X) =o' '(2vrL) 'tmexp[ —(X —Xo) /2Lo ].
Here

X,= —L[(1—c)(e„(Mn)+ e„'(Mn))+c(e (Co)+ e„'(Co))],
o2 = (1 —c)j[«„(Mn)] '+ [~~.'(Mn)]') +c1[«„(co)]'+[A ~.'(Co] '],

with

(12)

6,'(Mn) =lniE/VM„+E„(Mn)/V~„i p
E '(Co)=llliE/Vco +E,(co)/Vcoi y

where

E„(Mn)=28 "S "(z —n)+2J " 'n+2tLBH„(c)S ", E„(Co)=24 'S 'o+2J ' M"(z —n)+2pBH„(c)Sc'.

The E terms are the Ising energies at manganese and cobalt sites with n nearest cobalt neighbors,
occurring with a probability P = [z!/n! (z —o.')!](1—c)' c'. The angular brackets mean averaging
over the cluster composition (o.) of the nearest neighbors, and [b,e„]' means the square of the standard
deviation. The "sharp" Gaussian distribution (12) is simply a consequence of the central-limit theorem
which holds here because of the finite number of discrete energy levels. Therefore (12) is expected to
hold for a dominant number of possible paths (z' ), although it is derived for a total of K' self-avoid-
ing paths (K is the connective constant in the percolation theory). According to (12) almost all of the
T,i will lie in the range T,i =exp(x, ) exp(+KcWL) with a probability approaching unity for &»1 (say f
= L't'). This means that we can treat the quantity

2L

SLZ2L
as a random-walk problem with a unit step given by T,L for a total of z' steps. As is well known, one
obtains a "sharp" Gaussian distribution centered at S» = (-, —q)z'"T, i with a "small" width of order of
z T». The quantity q includes the effect of a small deviation from equal probabilities for both nega-
tive and positive signs, and is given by q = —, +O(L ' 2). Thus we find the Anderson series will always
converge if (L ' ~z T 2)'i'� (1, and diverge otherwise. Using the fact that [L ' 2exp(+&oWL)]'ti= 1
for I.=~, one obtains a critical condition for the convergence of the series:

(zV „)' (zV,.)' )0. (13a)

This is our central result: the critical condition for the localization. We note that for the energy
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FIG. 1. Regions of localized and propagating states
according to (13) for K(Mni, Co, }F&. The parameters
used are z =6, 5 '"=5/2, J ' =0.0792, 2+BH~(c =0)
= 0 (in THz) (Ref. 7), and & =2, J =1.17, 2P e&~(c
=1)=0.07 {in THz} (Ref. 8). A linear concentration de-
pendence is assumed for Hz(c). The dashed lines sug-
gest a rapid drop to the band tops (indicated by the
arrows}.
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range where E is (i) smaller than the minimum
of E„(Mn) and E '(Co), or (ii) larger than the
maximum of E „(Mn) and E „'(Co), [it turns out
that E„(Mn) '" &E„'(Co) '" and E~(Mn)
&E „'(Co) ], there is no randomness of the sign
for the summand of S». However, it is readily
seen that the same criterion for convergence as
(13a) is obtained in either case. For the latter
case, however, the series mill possess no imag-
inary part even in the divergent energy range be-
cause of the alternating sign in the Anderson
series, thus always leading to a localization.
This gives an additional criterion for localization,
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Similar situations occur at c=0 (c= 1) for the energy range E,(Mn) &E [E,(Co) &E]. In this case
there is no randomness of the sign because of lack of cobalt (manganese) ions [see (9)], and the sign
in the series will alternate leading to localization. This simply means one is at the top of the pure
band. We note that (13a) is similar to the result of Ziman' for an electronic localization in the binary
alloy. Our result (13a) also approaches the empirical formula of Buyers et al, ' if we ignore the effect
of the cluster composition, only keeping E(Mn) and E(Co) as distinctive. In Fig. 1 we exhibit the criti-
cal E-vs-c curve for given values" of parameters for K(Mn, , Co, )Fs. For the reasons already dis-
cussed, the curves should drop rapidly to the band tops (as indicated by the dashed lines) in the pure
limits (c=0, c=1). It is likely to be rapid because randomness of sign in (9) will be introduced even
with slight disorder. (We expect that the disorder will prevail in the concentration range (1 —c') t,
[1—(1-c)'j 'z «1 ($ is of order unity), where all kinds of cluster compositions are available along
the pathj. We also show the recent experimental data of Buyers et al. ' by vertical line segments.
The theory predicts localized and propagating upper branches, respectively, for K(Mn„Co„,)Fs and
K(Mn, »Co, »)F„ in agreement with their experiments. However, for the lower branches of these the
theory predicts localized states toward the bottom as shown, whereas the above authors claim all of
them are propagating. The figure suggests that the modes are not localized beyond the cobalt concen-
tration of about 70/o for the upper branch.

We expect that the model will be particularly applicable to a system with perovskite structure where
the nearest-neighbor exchange interaction is dominant. This method can also be applied to other (e.g. ,
ferromagnetic) mangetic systems.
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A microscopic model is presented for the structure and superconductivity of A„&&+yC2
compounds, where A is a monovalent atom or radical, & is an even-valence transition
metal, C is a chalcogenide, and the parameters x and y lie in the ranges 0.1 &x & 0.3,
0«y & 0.5. The model explains why the maximum superconducting transition tempera-
ture T~ " is higher than 12'K in bridge compounds with y =0.1, although the maximum
value of T& observed in related layer compounds with y = 0.0 is about 6'K.

Interest in layer compounds as possible super- compounds with y & 0.1 be described as interca-
conductive materials was stimulated by the work lated bridge compounds in contrast to A„TC, com-
of Wilson and Yoffe (WY) on the transition-metal pounds, which may be described simply as inter-
dichalcogenides TC,. When these materials are calation compounds. As we shall see, the experi-
pure and the even-valence transition metal T be- mental evidence' indicates that the role played by
longs to column IVb or VIb, they form sandwich the intercalated & atoms in affecting T~ is inci-
structures which are small-gap semiconductors. dental in the bridge compounds.
In analogy with Cohen's many-valley superconduc- A semiempirieal model of the energy bands of
privity' in GeTe, WY suggested' that the TC, semi- TC, compounds has recently been presented. '
conductors might become superconduetive if prop- The analysis suggests that stoichiometric TiS,
erly doped, and that an easy way to achieve high would have an energy gap of about 1 eV separat-
carrier densities was through intercalation of ing a filled Ti 3d-S 3p valence band from an emp-
monovalent atoms or radicals. Several column- ty Ti 4s conduction band. These two bands have a
Vb (odd-valence) transition-metal dichalcogen- high, approximately two-dimensional, density of
ides were already known to be metallic and super- states, as shown in Fig. 1(a). When intercalated
conducting, and these have recently been inter- donors in sufficient density are added to the ma-
calated' with the result that those with Ts near terial, a low, broad, three-dimensional s-p band
1'K in the pure state may exhibit increased val- is expected to fill the energy gap of the host
ues of Ts up to O'K when intercalated, while semiconductor. Because the inter calated ions
those with T~ near O'K in the pure state actually
show a decrease of T~ with intercalation.

The compound Ti„S2 (0.1 ~y -0.5) does not
have a sandwich structure. The Ti atoms are (a)

distributed alternately between filled and partia1-
E

ly occupied sheets, tending as y approaches 0.5 o4-
to the Ti,84 structure, where the metal layers
are alternately filled and half filled. 4 The y or
supernumary Ti atoms act as bridges connecting
filled Ti sheets, and make a contribution to the
density of states at the Fermi energy intrinsical-
ly different from that of intercalated donors.

8 F1Q 1 Density of electronic
in intercalated Ti, ,82 is about 10 to 13'K, or chiometric TiS2. (a) Without intercalation TiS& is a
3bout twice as great as T~

'" in the intereal3ted small-gap sandwich semiconductor. (b) Li„TiS2 g —
&)

T(Vb)Cs family. This suggests that the A„T,+,C2 is a metal with a low density of states near RF.
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