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We derive a statistical mechanical expression for the surface tension of a liquid-vapor
interface. It contains the density profile and the direct correlation function in the vicini-
ty of the interface. When a local Ornstein-Zernike approximation is made on the direct
correlation function, the surface-tension theory of Fisk and Widom is obtained.

Recent investigations of surface phenomena
near the liquid-vapor critical point by Fisk and
Widom,! by Felderhof,? and by Buff, Lovett, and
Stillinger,® were based on variants of the classic
Van der Waals theory of surface tension. We
present here an exact generalization of this theo-
ry. In particular, we give a derivation of a for-
mula for surface tension which involves the den-
sity profile of a liquid-vapor interface and also
the direct correlation function in the vicinity of
the interface. When the conventional Ornstein-
Zernike approximation is made on the direct cor-
relation function, the results of Fisk and Widom
follow directly.

While our derivation is new, and the result has
not previously appeared in the published scientif-
ic literature, the result is in fact not new.* In
view of the importance of the result, it seems
desirable to give a new and simple derivation.

Consider a fluid in a vertical gravitational field.

The magnitude of the field is taken sufficiently
weak that its only effect is to produce a liquid-
vapor interface. The vertical direction is the z
axis of a coordinate system, and ¥ denotes a vec-
tor in the x,y plane.

The equilibrium density of the fluid is #,(z).
As z becomes large and negative, this density
approaches the density #(l) of the uniform liquid
phase; and as z becomes large and positive, it
approaches the gas density #(g). We use the con-
ventional Gibbs equimolar surface to define the
location of the interface, and we select the coor-
dinate origin so that the equilibrium Gibbs sur-
face is the plane (x,y,0).

Now suppose that a density fluctuation occurs.
The new density is #(¥,2), and the fluctuation is
n,(f,z)=n(¥,z) - ny(z). As the density fluctuates,
the location of the Gibbs surface also fluctuates.
The instantaneous position of the Gibbs surface
is z,(r), and is given by

z2,(F) = fdz n,(¥,2)/An, (1)
where An=n(l) —n(g). The area of the equilib-

rium surface is A,, and the area of the new sur-
face is A. These are related by

A=Aj+z [dr|v,z,{)?, (2)

where the integral is taken over the original sur-
face A,. Because of translational symmetry in
the x,y plane, we may expand all fluctuations in
Fourier components,

n, (F’ Z) = Z;a n, (q,Z) eXp(ZéI‘F) ’ (3)

where { is a vector in the x,y plane. The posi-
tion of the Gibbs surface has the Fourier expan-
sion

2o(F) = 2202 0(q) exp(Eq-T) ; (4)

the coefficients are given by
2@ = [ dzn,(,2)/An. (5)
The change in area due to density fluctuations is
A=Ay=34,25,4%2,@)I* . (6)

Now let us calculate the change in free energy
due to density fluctuations. According to familiar
fluctuation theory, the free-energy change is
quadratic in the fluctuations,

AF = 3kT [d%r dz, d%v,dz,n,(F,,2,)K (F,,2,; T, 2,00, (F5,2,) (1)

and the inverse of the integral kernel K(v,z,;7,, 2,) is related to the equilibrium second moments of

density fluctuations by

K-l(_fuzl;_fz’zz) :<nl(Fl’zl)n1(F2’zz)> .

(8)

According to the statistical mechanical theory of inhomogeneous systems, as discussed, e.g., by Per-
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cus,’ this kernel can be expressed in terms of the density no(z) and the direct correlation function
C(lezl;yz’zz)a

K(F,,2,;T,,2,) = 0(F, = F,)0(2, —2,)/n,(z,) = C(F,,2,; 5,2,) . 9)

In Fourier components, the above equations become

AF =3ART [dz, [dz, Jon,*(@,2,)K(d;2,,2,)n,(d,2,) (10)

R(@;2,,2,)=0(, —2,)/n,(z,) - C(g;2,,2,). (11)
We use the definition

C@;2,,2,) = [dr,C,(0,2,; F,,2,) explid-T,) . (12)

Because fluctuations corresponding to different values of § are not coupled in the quadratic approxima-
tion, we may consider throughout only a single value of .

The idea of the derivation is to focus attention on density fluctuations which change the surface area,
to find the changes in free energy and area associated with these fluctuations, and to obtain the surface
tension o from the ratio of these changes using the thermodynamic formula

AF =a(A-A,). (13)

One approach is to find the density fluctuation which minimizes the free energy under the constraint of
a given change in surface area. This approach gives the same results, in the long-wavelength limit,
as the following more intuitive argument.

Consider a spontaneous long-wavelength fluctuation in the position z,(q) of the Gibbs surface. The
amplitude of the fluctuation is very small, so that the surface deviates only very slightly from planari-
ty. It is reasonable to suppose that this fluctuation in the surface is associated with a vertical shift in
the equilibrium density profile,

no(2) = 1oz —20(@)), (14)
without any change in the shape of the profile. Thus the change in density is

n(@;2)= - 2,(d) dny(z)/dz . (15)
When this is substituted in Eq. (10), we get the free-energy change

AF =3ART|2,@)|° [dz, [dz, dny(z,)/dz, K ; 2,,2,) dny(z,)/dz, . (16)

Let us expand the kernel K in powers of q;
I%(q;zl,zz)=K0(Zl,22)+q2K2(Zl,Z )+"'- (17)
In particular, the second-order coefficient is
K,(z,,2,)=1 [dz,dz,d%,7,2C(0,2,; T,,2,). (18)

In the limit ¢— 0, there is no change at all in the surface area, so that there will be no change in
free energy. This indicates that dn,(z)/dz is an eigenfunction of the kernel K,(z,,2,) with zero eigen-
value, or

Jaz,K(z,,2,)dn,(z,)/dz,=0. (19)

If the direct correlation function is known, this can be solved for the equilibrium surface profile. In
particular, if we make a local Ornstein-Zernike approximation on é, Eq. (19) reduces to the one used
by Fisk and Widom to find their approximate surface profile. We return to this point shortly.

The remaining term is quadratic in §; on comparing it with the corresponding change in surface area,
we find the following expression® for the surface tension:

a=kT [dz,dz,|dn,(z,)/dz,)K,(z,,2,) dn,(z,)/dz, . (20)

It should be noted that this expression makes no explicit reference to intermolecular potentials. [We
have not been able to find any direct connection between Eq. (20) and the well-known formula for o de-
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rived by Kirkwood and Buff.”]
The relation of our theory to those of Fisk and Widom and Felderhof can be seen easily as follows.
Let us make a local Ornstein-Zernike approximation on the direct correlation function,

é(q;znzz)g Colz,)0(z, —2,) - _(l?lz(qz -dz/d212)6(21 -2z,). (21)

The first term C,(z) is related to the local compressibility of the fluid at density #,(z), or to the local
Helmholtz free energy per particle, a(n), at z,

RT (n™* =C,)=n""0p/on = 0*na(n)/on?. (22)

The quantity / is a characteristic (Debye) length, of the order of the range of the direct correlation
function. In this approximation, the density profile is determined by the differential equation

(621, a(n,)/on2] dny/dz + $kT1?d®n,/dz® =0 ' (23)
One integration leads to an equation equivalent to the one used by Fisk and Widom,

ongya(n,)/dn, + kT 1?d*n,/dz® = const. (24)
In the same approximation, K,(z,,2,) becomes #26(z, —2,), and the surface tension is given by

a=+kTI [dz [dn,(z)/dz ]2 . (25)

This is equivalent to the formula used by Fisk and Widom in their theory of surface tension.
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Shortly after initiation of a high-voltage toroidal discharge in Ar, departure from free-
electron acceleration is observed, together with electron heating such that the total ener-
gy input is accounted for. This early behavior is attributed to a high-frequency instabil-
ity (wp;<w <wp,) due to interaction between relatively few trapped electrons and the stream-
ing electrons.

In this paper we report an investigation of the observed, as well as the concurrent onset of
early time behavior of a high-voltage, toroidal turbulence and electron heating,
discharge. The transition from free-electron ac- The experimental system has been described
celeration to acceleration at a reduced rate is previously' in a report on the behavior of the dis-
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