Localized-to-Itinerant Electron Transitions in Rare-Earth Cobaltates

V. G. Bhide, D. S. Rajoria, and Y. S. Reddy National Physical Laboratory, New Delhi-12, India

and

G. Rama Rao, G. V. Subba Rao, and C. N. R. Rao Indian Institute of Technology, Kanpur-16, India (Received 26 January 1972)

Mössbauer studies show that cobalt ions in $LaCoO₃$ exist predominantly in the low-spin Co^{III} state at low temperatures and partially transform to the high-spin $Co³⁺$ state up to 200 K. Above 200 K, Co^{II} and Co^{4+} ions are formed by the transfer of d electrons from Co^{3+} to Co^{III} ; Co^{3+} ions completely disappear at the first-order localized-to-itinerations in electron transition temperature.

Raccah and Goodenough¹ (RG) showed the coexistence of low-spin and high-spin states of cobalt in LaCoO, and observed a first-order phase change at 1210 K due to a unique transition of the e, electrons from the localized-to-itinerant state (LI transition). RG proposed a mechanism of the LI transition in terms of the temperature variations in the spin-state equilibria, symmetry changes, and ion movements. The observation of the LI transition implies that the crystal field and band limits of d electrons are distinct thermodynamic states.^{1,2} We have examined the nature dynamic states. 1,2 We have examined the natur of the cobalt spin states and the LI transition in LaCoO₂ by employing Mössbauer spectroscopy. We have also investigated whether the novel phase transitions from LI states of d electrons occur in other cobaltates as well.

Magnetic-susceptibility (χ_g) data^{1,3,4} of LaCoO₃ indicate that the cobalt ions exist predominantly in the low-spin Co^{III} state at low temperatures; however, as the temperature is increased, these diamagnetic ions are transformed into paramagnetic high-spin Co^{3+} ions. An insight into this transformation can be obtained by examining the variation of $\chi_{g}T$ with T. If the transformation is between Co^{III} and $Co³⁺$, we can show that

$$
Co^{3+}/Co^{III} = (N^2\mu^2/3R\chi_g T) - 1 , \qquad (1)
$$

where μ is the moment due to spin only of the Co^{3+} ion. A plot of $\chi_{g}T$ for LaCoO₃ is shown in Fig. 1(a).

We sought to investigate this variation in the spin-state equilibrium by recording the $M\ddot{o}s$ sbauer spectra of $LaCoO₃$ doped with $Co⁵⁷$ and matched against a $K_4Fe(CN)_6$ single-crystal absorber; Fig. 2 shows typical spectra at various temperatures. The spectra are characterized by two resonances whose relative intensities are temperature dependent. Based on the isomer-

shift systematics, $^{\rm 5\,}$ the higher-energy resonanc is attributed uniquely to high-spin $Fe³⁺$ arising out of the electron capture decay of Co^{3+} $(t_{2g}^{4}e_{g}^{2})$. The lower-energy resonance may be due to Fe^{III}
arising out of low-spin Co^{III} ($t_{2g}^{\text{ee}}e_g^{\text{e}}$)). If this iden-

FIG. 1. (a) Plot of $\chi_{g}T$ against temperature for LaCoO₃. (b) Temperature variation of the relative population of Fe^{3+} with respect to other states (obtained) from Mossbauer data). The ratio of the intensity of the high-energy resonance (due to Fe^{3+}) to that of the lowenergy resonance is plotted as the ordinate.

FIG. 2. Typical Mössbauer spectra of LaCoO₃ at different temperatures.

tification is correct, the relative intensities of the two states should comply with (1). We, however, see [Fig. 1(b)] that while up to 200 K, the relative intensities indeed comply with (1) , 6 beyond 200 K the relative intensity of the highervelocity resonance decreases and completely disappears at 1210 K, corresponding to the LI transition. This discrepancy raises a question as to whether the lower-energy resonance can be uniquely attributed to the low-spin Co^{III} alone. although there is no doubt that at very low temperatures $(200 K), this resonance is essentially$ due to Co^{III}. We can explain this behavior by assuming that the e_g electrons from Co^{3+} ions are
transferred to Co^{111} ions, creating divalent Co^{11} $(t_{2g}^{\ \ 6}e_{g}^{\ \ 1})$ and tetravalent cobalt with a configuration $t_{2g}^{\overline{5}}e_g^{\overline{0}}$ (Co^{IV}), $t_{2g}^{\overline{3}}e_g^{\overline{2}}$ (Co⁴⁺), or $t_{2g}^{\overline{4}}e_g^{\overline{1}}$ (Co^{iv}, inter-
mediate spin). Since $\chi_g T$ increases rapidly with T, it appears likely that $Co^{II} + Co^{4+}$ pairs are formed. Electron capture decay of these cobalt ions would give Fe¹¹ ($t_{2g}^e e_g^o$) and Fe⁴⁺ ($t_{2g}^3 e_g^1$) in
the Mössbauer spectra.⁷ The isomer shifts of both these states are near the zero-velocity position and would overlap the resonance due to $\mathbf{F}e^{\text{III}}(t_{2g}e_{g}e_{g})$. Electron transfer *via* e_{g} orbitals rather than *via* t_{2g} orbitals is compatible with $\Delta_{cac}^{\sigma} \circ \Delta_{cac}^{\pi}$. The nature of the spin-state equilibria consistent with the RG mechanism for the LI transition is discussed in the footnotes.⁸

RG have examined the crystal-symmetry changes in $LaCoO₃$ employing x-ray diffraction. They observed an increase in the Debye-Waller factor in the $400 < T < 650$ -K range followed by a symmetry change from $R\overline{3}C$ to $R\overline{3}$ due to an ordering

FIG. 3. (a) Area under resonance (obtained by using a stainless-steel absorber) for LaCoO₃ and GdCoO₃ plotted against temperature. (b) Isomer shifts of (1) Fe^{3+} , and (2) the low-energy resonance for LaCoO₃ and NdCoO₃: circles, LaCoO₃; triangles, NdCoO₃.

of the Co_I and Co_{II} sites of the $R\overline{3}$ cell.⁹ We have examined these and other structural changes by investigating the variation of the Lamb-Mössbauer (LM) factor (area under resonance) with temperature $[Fig. 3(a)]$. Our Mössbauer data agree excellently with the x-ray data of RG on $LaCoO₃$. The LM factor seems to be more sensitive than x-ray diffraction or differential-thermal analysis (DTA) in identifying phase transitions. The LM factor shows transitions around 500, 650, 900, and 1210 K, of which the last three are shown by DTA as well; in the DTA the 1200-K transition is seen as a large endothermic peak with a ΔH of 1 kcal mole⁻¹. At 500 K, there is the onset of short-range order and a break in the resistivity-temperature curve. At 650 K. the plateau in the $(1/\chi_g)$ -T curve ends and the
plateau in the [Fe³⁺] curve [Fig. 1(b)] starts; above this temperature the Seebeck coefficient and resistivity become essentially constant. Metallic behavior of the resistivity is, however, seen only above the LI transition at 1210 K.

Above the transition at 1210 K, the LM factor increases with temperature, indicating establishment of long-range order. The decrease in the LM factor in the 970-1210-K range shows occurrence of large ionic vibrations.

An insight into the nature of the LI transition is also obtained through center-shift changes with temperature for the Fe^{3+} state and to some extent for the other resonance as well. The center shift $[Fig. 3(b)]$ decreases substantially in the region $650 < T < 900$ K, indicating either (a) a change in the mean square velocity, and/or (b) a change in the chemical shift. The observed changes cannot be entirely accounted for by (a) since these changes should have been reflected prominently in the LM factor changes. If we assume that the observed changes are due to a chemical shift, then the reduction in isomer shift would imply a greater covalency resulting in an increase in the overlap integrals. As already mentioned, $\Delta_{\text{vac}}^{\circ}$ $>\Delta_{ca}^{\pi}$; the increase in overlap integrals would initiate the delocalization of the e_{κ} electrons to form the σ^* band (perhaps with the t_{2g} electrons still localized). This provides a distinction between the various valence states at the two sites.

Having clarified to some extent the nature of the spin-state equilibria and the LI transition in $LaCoO₃$, we next examined several other rareearth cobaltates, $RCoO₃$, employing magnetic susceptibility, Mössbauer spectroscopy, x-ray diffraction, DTA, and electron transport measurements. Our observations on these cobaltates are as follows: (i) The $(1/\chi_e)$ -T curves of all the cobaltates show the essential features of $LaCoO₃$, but the plateau region (where $1/\chi_{g}$ is temperature independent) varies from one cobaltate to another. (ii) Mössbauer spectra show temperature variations similar to $LaCoO₃$. Plots of the relative intensity of the high-velocity resonance (population of Fe^{3+}) against temperature, as in Fig. 1(b), show that $[Fe^{+3}]$ increases up to \sim 200 K and then decreases with increase in temperature, completely disappearing at relatively high temperatures corresponding to the LI transition temperatures (1030 and 980 K, respectively, when R is Nd and Gd). (iii) Both the LM factor and DTA measurements show phase transitions at the LI transition temperatures¹⁰ [see Fig. 3(a) for $GdCoO₃$. The LM factor sharply increases after the transition temperature in all the cases. (iv) Isomer shifts vary continuously through the LI transitions $[Fig. 3(b)]$ indicating that the transitions are not associated with large ionic displacements. (v) There are no significant changes

in crystal structure or volume through the firstorder LI transitions. (vi) Electrical-resistivity data of all the cobaltates are generally similar to those of LaCoO₃ with low activation energy (0.1) eV) in the low-temperature region $(T < 200 \text{ K})$, where a t_{2g} electron is promoted to the σ^* band of itinerant e_{κ} electrons. The resistivity, as well as the Seebeck coefficient, remains low and constant at relatively high temperatures, indicating metal-like behavior.

These observations on several of the cobaltates point out that the first-order LI transitions are essentially caused by the change in the entropy of d electrons, as first suggested by RG in the case of LaCoO₃. We are presently continuing our investigations on all these cobaltates and intend publishing detailed reports in the near future.

The authors are most thankful to Dr. John B. Goodenough for helpful discussions on the interpretation of the data, and to the Council for Scientific Industrial Research, India, for support of this research.

 ${}^{1}P$. M. Raccah and J. B. Goodenough, Phys. Rev. 155, 982 (1967).

 $2J.$ B. Goodenough, Czech. J. Phys. B17, 304 (1967). 3G . H. Jonker, Philips Res. Rep. 24, 1 (1969).

 AR . R. Heikes, R. C. Miller, and R. Mazelsky, Physica (Utrecht) 30, 1600 (1964).

 5 We have established that low-spin Co^{III} ions yield low-spin $\mathrm{Fe}^{\mathrm{III}}$ ions, while high-spin Co^{3+} ions yield high-spin Fe³⁺ ions. When Co^{57} doped in RFeO_3 was used as the source, we only saw high-spin $Fe³⁺$ spectra as in the orthoferrites [M. Eibshütz, S. Shtrikman, and D. Treves, Phys. Rev. 156, 562 (1967)], clearly showing that low-spin $\mathrm{Fe}^{\mathrm{III}}$ in the spectra of $R\mathrm{Co}\mathrm{O}_3$ arises from the existence of the low-spin Co^{III} ions and not from electron capture effects. Our assignments of the isomer shifts to the two spin states are consistent with the earlier studies on cobalt compounds: G. K. Wertheim, Phys. Rev. 124, 761 (1961); V. G. Bhide and G. K.Shenoy, Phys. Rev. 147, 306, 309 (1966); W. Triftshäuser and P. P. Craig, $\overline{\text{Phys. Rev. 162}}$, 274 (1967); J. G. Mullen and H. N. Ok, Phys. Bev. 168, 550, ⁵⁶³ (1968), and 181, 986(E) (1969).

⁶We have obtained the energy difference, $E(C_0^{3+})$ $-E({\rm Co}^{\rm III})$, from the Mössbauer data in the low-temperature region, and find it to be about 0.05 eV, a value close to that reported from susceptibility data (see Refs. 1, 3, and 4). In the low-temperature region (5200 K) , the activation energy for conduction is ≤ 0.1 eV.

 ${\rm ^7}$ There is also a possibility of exciton transfer in the 400-650-K region, as suggested by RG, to create Co¹¹¹ $(t_{2g}^{}^{}e_{g}^{}^{})$ intermediate spin states. There seems to be no evidence from the Mössbauer data for the Co²⁺ and Co^{IV}

states proposed by RG.

 8 In the range 650 \leq T \leq 1210 K, the configurations of Co_I and Co_{II} sublattices would be $Co_a^{III}Co_b^{II}Co_c^{II}Co_d^{4+}$ and $Co_4^{3+}Co_6^{4+}Co_6^{111}Co_d^{11}$, respectively. At 650 K, $d \approx 0$. The preferential excursions of La³⁺ ions towards Co_I found by RG in the 650 $\leq T \leq 925-K$ range in $b > d$; the Co_I-O and Co_{II}-O separations are similar in this temperature range. Further, in this temperature range, it is likely that $a \approx b + c + d$, so that the e_r electrons spend equal time at all Co ions, a behavior which is reasonable near the LI transition. As $T \rightarrow 1210$ K, $b \approx d \approx 0$, and the La³⁺ ions are midway between the Co_I and Co_{II} subarrays. When $T > 925$ K, $a < c$ and the

 Co_I -O separation should be smaller than the Co_{II} -O separation, as observed by RG (Ref. 1). At $T \ge 1210$ K, the configurations of the two cobalt sites are likely to $(t_2^6\sigma^{*5})_a(t_2^5\sigma^{*1})_{1/2-a}$ and $(t_2^4\sigma^{*2-5})_a(t_2^5\sigma^{*1})_{1/2-a}$

⁹This is consistent with our Mossbauer results, except that we find that ordering occurs after the transfer of σ -bonding d electrons from Co³⁺ to Co^{III} ions.

 10 GdCoO₂ shows transitions around 500 and 980 K, the latter corresponding to the LI transition. Our results on GdCoO₃ significantly differ from those of A. Casalot, P. Dougier, and P. Hagenmuller [J. Phys. Chem. Solids 32, 407 (1971)], who failed to see the first-order transition at 980'K.

Effect of Pressure and Alloying on the Itinerant Antiferromagnetic Ordering in Cr-Fe Alloys

Rajaram Nityananda and A. S. Reshamwala Materials Science Division, National Aeronautical Laboratory, Bangalore-17, India

and

A. Jayaraman

Bell Telephone Laboratories, Murray Hill, New Jersey 07974, and Materials Science Division, National Aeronautical Laboratory, Bangalore-17, India (Received 8 March 1972)

We have investigated the effect of hydrostatic pressure on chromium-rich iron alloys with Ru and Mn additions. The results show that addition of Fe to Cr rotates the commensurate-incommensurate phase boundary and causes the reversal in the ordering sequence of the magnetic transitions observed in Cr-Fe alloys. Many other anomalous characteristics of Cr-Fe alloys are explained.

The itinerant antiferromagnetic transitions in chromium-rich alloys containing a wide variety of transition metals have been studied extensively at atmospheric pressure¹⁻⁹ and also at high pressure.¹⁰⁻¹² Of these, the behavior of Cr-Fe pressure.¹⁰⁻¹² Of these, the behavior of Cr-
alloys^{3-5,10,12} is unique and also poorly under stood. The anomalous situation with regard to Cr-Fe alloys^{4,5} is the following: (1) the lowering of T_N when Fe is added; (2) the appearance of only the incommensurate (I) phase at low Fe concentration $\left\langle \langle 2\% \rangle \right\rangle$; (3) the appearance of the commensurate (C) phase at higher concentration of Fe, but at a lower temperature than the I phase; (4) the sharp and large resistivity rise $(\Delta \rho / \rho \approx 40\%)$ at the I-C transition; and (5) the presence of local magnetic moment on Fe, which is only weakly coupled to the antiferromagnetic (AF) state of Cr. In this study we have investigated, under pressure, Cr-Fe alloys with Ru or Mn additions. The important finding is that a triple point between paramagnetic (P), I, and C phases exists in Cr-Fe alloys as in Cr-Mn or phases exists in Cr-Fe alloys as in Cr-Mn or
Cr-Ru alloys, ¹¹ but the addition of Fe to Cr twist:

the I-C phase boundary and reverses the magnetic ordering sequence P-C-I observed in the latte:
alloys.¹¹ It is suggested that the sharp resistance alloys. 11 It is suggested that the sharp resistanc anomaly at the I-C transition and the progressive loss of sharpness^{10, 12} with pressure may be due to the closeness of the latter to the P-I transition at low pressure, and their separation at higher pressure.

Hydrostatic pressure was generated as described Hydrostatic pressure was generated as descrearlier.¹³ The resistivity anomaly was used to follow the transitions. Figure 1 shows the resistivity as a function of temperature at various pressures, for $Cr-3\%$ Fe-0.5% Ru. In the inset the resistivity-temperature data for Cr-3% Fe is
shown.¹² The addition of 0.5% Ru has raised the shown. 12 The addition of 0.5% Ru has raised the T_N by 125°, and has broadened the sharp resistivity anomaly seen in Cr-3% Fe alloy. We believe this transition to be the P-C transition. When pressure is applied, T_N falls at a rate of about $15^{\circ}/\text{kbar}$. In the range 9-11 kbar the resistance anomaly becomes almost as steep as that seen for the I-C transition in $Cr-3\%$ Fe alloy and has a clearly identifiable inflection point, which we be-