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Varialional Calculation of the Surface-Plasmon Dispersion Relation for a Metal"'
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We have computed the surface-plasmon dispersion relation for a metal and compared it
with experimental results for Al and Mg. The metal surface is approximated by a step
potential and the calculation carried out within the quantum-mechanical random-phase ap-
proximation. The integral equation for the self-sustained oscillations is handled by a
variational approach. Our dispersion relation is in much better agreement with experi-
mental results than the relation computed for a semi-infinite electron gas.

The dispersion relation for the surface plas-
mon plays an important role in the analysis of
the inelastic low-energy electron diffraction
(Il EED) data. ' Recent experimental data" indi-
cate that the coefficient of the term linear in par-
allel momentum in the dispersion relation is neg-
ative. Microscopic calculations' for a semi-in-
finite electron gas with a perfectly reflecting
boundary give a positive coefficient for the linear
term in contrast to the experimental evidence.
It has been suggested that the shape of the sur-
face potential, or equivalently the density profile
at the surface, plays an important role in deter-
mining the surface-plasmon dispersion relation. ' '
Using a hydrodynamic model with a variable elec-
tron-density profile, Bennett' has been able to
account for Kunz's experimental data for Mg. '
It is not clear, however, that the hydrodynamic
approximation is justified, and a first-principle
calculation for a realistic surface potential with
no adjustable parameters is of interest.

We report here a microscopic calculation of

p(Q, z;(u) = f dz' L{ Q, z, z';~) V( Q, z), (2)

where Q is the component of momentum parallel
to the surface and ~ is the frequency. Within the
RPA the general form of the linear response
function L(Q, z, z'; v) is well known. " In the
following, we shall carry all calculation to sec-
ond order in Q. Accordingly, we expand L and
obtain'

the surface-plasmon dispersion relation where
the metal surface is represented by a finite step
potential

() 0, z(0,
8'+E F, z &0.

where W ls 'the work function and @F =+k F /2m
is the Fermi energy of the metal. The calcula-
tion is carried out within the random-phase ap-
proximation (RPA).

The charge-density response of the system is
related to the total electric potential V by the
equation

I,(Q, z, z; &) =4ms'g f(lk, l)(k F2 k.2)y„*(z)y„(z )[I+-,'Q2{k,' k. ') s2/8(2ma~)']
kz

xQg, .(z)g, .*(z')[(k,' —k,"—Q'+2mb~) '+{k,2-k,"—Q' —2m@~) ']+0(Q'/&u'). (3)

Here g„(z) is a solution of the one-dimensional Schrodinger equation for the potential given in (1),
and f{Ik, I) is the zero-temperature Fermi function which vanishes for Ik, I &k r. In Eq. (3) the sum-
mation over k, ' yields the Green's function of a single electron in the potential (1), which is easily
computed.

The electric potential in a charged system is also related to the charge density by Poisson's equa-
tion' which can be written

V(Q z' (u) =(27l/Q) J dz'e I I p(Q z . ~)

Equations (2) and (4) can be combined to form a homogeneous integral equation for p which determines
the self-sustained oscillations of the system.

The kernel of the integral equation is Lfo, where fo(z, z') = 2~e oI ' ' I/Q, and the solutions to the
eigenvalue problem

Lfolm) =~I+), A =1,
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are solutions of the homogeneous equation. For complex values of ~, L (u) =L(e) where e = —co* (a
star indicates the complex conjugate). It can be shown that, "if lu(~)) is a right eigenvector of Lfo,
then (u(m) I is a left eigenvector of fL, with the same eigenvalue. Therefore the functional form

(u() IfoLf Iu(~)) (v(~) IL I v(~))
(u(~) If lu(~)) (v(~) If '

I v(~)) '

where I v(cu)) =fo I u(u&)) and fo '(z, z') = [Q' —S'/Bz']5(z —z')/4m, ' is stationary, if and only if I v(~)) is
an eigenvector of L. Thus we have a variational principle for the determination of A,. The procedure
is to choose a functional form for the potential Iv) which depends on variational parameters and to
adjust the parameters and complex frequency ~ in order to satisfy the conditions A.(~(q)) = 1, Q, /5lv(cv))
=0, and Q, /5(v(m) I=O.

To gain some insight into the choice of variational functions, "notice that if ~ is chosen to be pure
imaginary and positive, then ~ = ~ and L is Hermitian. A knowledge of the spectrum of Hermitian op-
erators leads one to expect there is an isolated eigenvalue which is associated with a localized charge
distribution with no nodes. This eigenvalue continues to complex frequencies and must be the one that
gives rise to the surface plasmon on physical grounds.

Hence, we have chosen (n being a complex variational parameter)

2~ e~', z co,
v, (z; (u) =-

e "', z&0,

for the potential function, which corresponds to the charge distribution

0, z&0,
(1+o'/Q) 5(z) +(Q'- o")e '/q, z )0.

(6)

The dependence on ~ is implicit in o.; u, (z, &u) will contain p= o.(~). For this potentia]. form, A, ,(p, o)
=A.,(o'. , P*) so that P*= o at the stationary point, and one can analytically perform all of the integrals
for X and L, Eqs. (&) and (5), except for one integration over the finite interval —k F &k, &k~, which is
performed numerically. For imaginary u, z, has a minimum for n real and o. z q.

Evaluating (5) in the lower half of the complex w plane where z(&u, (Q)}=1, we find that Reg, is a
maximum and Im&, has a saddle point at 6X/5o. = 0. Since ReA. , is a maximum and g - cv

' for small q,
we obtain a lower bound for the real part of the dispersion relation. At the maximum, Reo. &, q and
Ima is small and negative.

The leading term in the dispersion relation for cu, (Q) is &u„=~~/W2, where a~ is the bulk-plasmon
frequency. The coefficients in the dispersion relation

= 1+ii;+(A., +iA, )—+(8,+ia,)—
s0

(7)

are given in Table I for an electron density which corresponds to Al. The parameters" used in (2) are
E F =11.64 eV, W=4. 19 eV, and 4o~ =14.2 eV (this is the value of R~~ needed by Bagchi et al. to fit
their IRKED data). The experimentally determined coefficients and RPA results for the semi-infinite
electron gas' are presented in Table I for comparison.

%e have also obtained the dispersion relation

~(Q) . Q . Q&'= 1+(-0.234+0.244i) —+(2.02+0.95i)
aO kF kF)

for Mg using" E F = 7.13 eV, 8'= 3.66 eV, and S~~ =10.60 eV. The real part of this expression is plot-
ted in Fig. 1 for comparison with Kunz's data' (Kunz quotes a value of R&u„= 7.3 eV which has been
used to normalize his data, plotted in Fig. 1). For comparison, the RPA result for the semi-infinite
gas is

.(Q) = 1+(0.455+0.009i)—+(0.776+0.027i)
so kF

the real part of this expression is also plotted in Fig. l.
In order to assess the accuracy of the results obtained, one should perform the computation us-
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TABLE I. Coefficients for Al in the expansion of co~ (Q) for small Q, Eq. (7).

Source B2

This calculation
Bagchi et al.

Preferred
Acceptable

Semi-infinite BPA

—0.122

—0.12
0.09
0.602

3.0
1.8
0.992

0.15
0.16

0

0.358

0.13
0.13
0.013 0.043

Bef. 1. Ref. 3.
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FIG. 1. Real part of w~(Q)/~~0 as a function of Q/kF
for Mg. Solid curve, present calculation; dashed
curve, semi-infinite electron-gas calculation reported
in Bef. 3; experimental points, from the data of Kunz,
Bef. 2 ~

ing a. variety of trial functions. It is difficult to
find acceptable trial functions which allow Eq. (5).
to be analytically reduced to a single integration
over a finite interval. The reduction is possible
for u, (z; &u) = 0(z —a), where a is the variational
parameter. One cannot satisfy the extremum
condition 5A. /flu(&u)) =0 with the single real vari-
ational parameter a, since X(&u) is complex.
However, for very small Q (SO. lkF) we find that
the extremum condition is "almost" satisfied for
a =- 0.5/k F and that the value of A. (~) is almost
the same as we found using the trial function giv-
en in Eq. (6).

The agreement between the theoretical and ex-
perimental results for the Re+, is excellent for
Al, ' but not nearly so good for the Mg data. '
However, the experimental uncertainties are
large, and the agreement is greatly improved
over the semi-infinite electron-gas relation. '

The value I,=0 is independent of the trial func-
tion, since A., (~) -su~'/2~' as Q-0. Hence, one
needs to attribute the experimental values of I;
to some other features, such as band effects and
surface scattering, that have not been included in
the present treatment.

The theoretical value for the coefficient A., of
Ime, is in order-of-magnitude agreement with
the value needed to fit the experimental results
for Al. ' Since the method used for the fitting
does not give a precise estimate of A„' there is
no clear disagreement with experiments for any
of the computed coefficients. This is a definite
improvement over the results of the calculation
for the semi-infinite medium. An analysis of
semiconductor tunneling data" indicates that A,
should be 10 to 20 times larger than the RPA val™
ue for a semi-infinite electron gas. This is con-
sistent with the present calculation, and with the
values obtained by Feibelman' for a surface mod-
el with a step in the density profile. Feibelman's
value for Al would be A, =0.227. Since we have
used a realistic model for a metal surface which
produces results for Rex, in good agreement
with experiment, we feel that the values for A.,
and B, quoted here are the best values that ar' e
presently available for these coefficients.
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