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suggests that the neutron distribution for '"Sn is
bigger than the proton distribution. Assuming
this interpretation to be correct, the results
yield a value for the neutron-proton rms radius
difference of 0.22+ 0.09 F. This is in good agree-
ment with other estimates of this quantity for Sn
isotopes" and provides additional evidence for
the validity of the present procedures.

In conclusion it has been shown that a nucleon-
s interaction obtained from an analysis of low-
energy data can be used as the effective interac-
tion for n-nucleus elastic scattering. The result-
ing fits of e-nucleus data, containing consider-
able structure, are much improved over those
obtained with standard optical models and offer
a possible method of obtaining information con-
cerning nuclear-nucleon density distributions.
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Electron Gas in Superstrong Magnetic Fields: Wigner Transition
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It is suggested that in extreme magnetic fields (H &10'2 G) a high-density electron gas
(in a uniform positive background) undergoes a transition to an ordered structure. This
corresponds to the "Wigner" transition of a low-density gas in the absence of a field. It
is proposed that the ordered structure is a two-dimensional hexagonal lattice of "charged
rods." The lattice spacing is evaluated for densities of astrophysical interest relevant
to white dwarfs and pulsars.

In recent years there has been a great deal of
interest in the properties of matter in the outer
regions of gravitationally collapsed objects, i.e. ,
white dwarfs and neutron stars. These stars are
characterized by high density, and in many eases
are associated with intense magnetic fields: 10'
6 for white dwarfs and up to 10' 6 for neutron
stars. A plausible model for this situation is that
of a relativistic (neutralized) noninteracting elec-

tron gas. ' ' In this note we wish to argue that
heretofore neglected effects due to electron-elec-
tron intera. etions may be extremely important and,
on the basis of' simple considerations we propose
a simple picture for the state of matter under
these conditions. This view is similar to the pic-
ture recently proposed by Buderman, but ls
based on quite different considerations.

In the absence of a magnetic field the Hamilton-
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ian for an electron gas has the form KE(-r, 2)

+PE(r, '), where r, is the radius (in Bohr units)
of the (spherical) volume per electron. Thus at
high density the Coulomb interaction may be
treated as a small perturbation on the free-par-
ticle behavior.

Our calculation was prompted by the theoreti-
cal result that in strong magnetic fields the rela-
tive strength of the kinetic energy and exchange
(correlation) energy is modified. Indeed, in

fields such that S~,& &F, where ~, is the cyclo-
tron frequency and &F is the zero-field Fermi
level, the ratio of the exchange energy to the
free-electron energy behaves as'

Z,„/E„„~r, (h(u, /e, ) ln(h(u, /e, ),
i.e. , the exchange energy dominates over the in-
dependent particle behavior. This is also the
case for the correlation energy. We argue that
this is to be expected for the following reason.
When the Larmor radius r& for an electron be-
comes smaller than r„ the system is essentially
a dilute electron gas normal to the magnetic field
and should undergo a "Wigner" transition to an

ordered state. This should resemble a two-di-
mensional lattice of charged rods with each rod
behaving as a linear electron gas. The magnetic
field H, required for such a state is given by

est (r, -0.01—0.1).
In the following we shall ignore relativistic ef-

fects and assume the system is at zero tempera-
ture. Unfortunately, we have no workable relati-
vistic theory for interacting electrons so we can-
not estimate the effect of the former approxima-
tion. Thermal effects should certainly play a
role, but here we consider in essence only the
infinite-field limit where they are not important.
We now calculate the energy and equilibrium lat-
tice spacing of a planar hexagonal lattice of lin-
ear electron gases in a uniform positively charged
background. In the high-field limit the rods are
essentially rigid, and the electron spins are all
aligned parallel.

I et there be v electrons on a line of length L
and let l, =L/v. The Fermi energy per rod is

E, = (5'/2~)(w/l, )',
so that the total kinetic energy per rod is E„
= (IP/6m) v'L/l, '. Following Wigner, we replace
the hexagonal prism (the unit cell in our system)
by a cylinder of radius a having the same volume.
We also neglect the interactions among the cylin-
ders which we take to be electrically neutral.
Thus lo and a are connected by the relation ~a'l, n,
=1, where vo is the electron density. The kinetic
energy per unit volume is

r„/a, =(Kc /ett)"' a, '=r, (2) Eo ——6 1T/6~lo a
or To calculate the Coulomb interaction energy

~,= 2.5x10'x, ' 6, per line we adopt the following simple procedure.

ich is within the range of astrophysical inter- We assume the density is high enough that the
Hartree-Fock approximation is sufficient:

e„=e':Q ft'y, *(x)y„(x)rp,i*(x')&p,.(x') =, , e,„=—e' g ffy, *(x)q„(x')y,.*(x)cp„.(x')dx dx dx dx

sat

(6)

Next we assume that the g„are plane waves and introduce a lower-limit cutoff & on the x integrations
to handle the Coulomb singularity. The singular terms in & will cancel and we shall eventually take
&-0. Without too much difficulty we find

2e' I. e ' e' sin r/ sin q . 7TE
e~ = — » ln —+——1, e« ——— 2, 2 + - 2 Ci(2')ma'l ' e I. ' '" ma'I -'g' g

' l

Next we obtain the Coulomb energy of interaction between the electrons and the uniform background
as

d~r dz
~C ——e 0&0 2 2 i]2

where p and s are cylindrical coordinates and the integration extends over the cylinder. We find

2e' /2L) 1
&c= —,.l —. »I( I

—
2

~
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Finally, the zero-point energy for the motion of the rod about the axis of the cylinder is'

e, = ae/wa'(2ml, ')'I'.

We introduce dimensionless parameters n, =p/a, ', a = o.a,. (No« th«p = 3/4~r, '.) Then the total
energy in Rydbergs per cubic Bohr unit is

E = 3 vr'ot'p'+ (2'')'~2+ 4ma'p2[ln(o. 'p) + C], C = ln(m') + y —2 = + 0.867, (11.a)

9,2 ( 27'P12
E = o'. r, 9+l

2 ~ r, ' '+ —o2r, 6 ln —1+C', C'=——0.188.64 ' (32m') '
4m

' (r, )
(11b)

9~'n' 27n„2 ( 27 ')"'
(12)
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To determine e, we minimize E with respect to
n T.he results are shown in Fig. 1. At this min-
imum, a„ the value of & is

As can be seen from Fig. 1, the condition for
the validity of our model, i.e. , n &r„, is satis-
fied for H = 10" G by x, & 0.07 and for H = 10' G
by r, &0.025.

In conclusion we note that our model includes
the effects of electron-electron interactions ne-
glected in Ref. 5, but p'resumes the nuclear charge
to be represented as a uniform positive back-
ground, whereas in Ref. 5 the positive charge is
located more realistically as "pearls on a string. "
A more satisfactory theory would have to amalga-
mate the two points of view. We intend in the
future to calculate the energy of the homogeneous
electron gas with a smoothed-out positive charge
as a function of applied magnetic field in order to
make a comparison with the results described in
this note. ' We also intend to study the effect of a
nonuniform positive background such as proposed
by Ruderman.
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FIG. 1. Lattice spacing versus r~. Dashed lines,
values of rz in the fields indicated (in Gauss).
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'The restoring force will actually be field dependent,

but we are essentially considering the infinite-field
limit where this dependence drops out.


