mania, Australia, August 1971 (to be published).

 $12W$. R. Webber, in *Proceedings of the Eleventh Inter*national Conference on Cosmic Rays, Budapest, 1969, edited by T. Gémesy et al. (Akademiai Kiado, Budapest, 1970), p. 275.

 13 N. L. Grigorov et al., Acta Phys., Suppl. 1, 29, 518 (1970), and papers presented at the Twelfth International Conference on Cosmic Rays, Hobart, Tasmania, August 1971 (to be published). The Grigorov et al. results on proton, α -particle, and all particle fluxes are unusual and should lead to several inconsistencies with other cosmic-ray experiments. If the proton component has a "cutoff" below 1000 GeV then the charge composition of cosmic rays at 10^6 GeV would be mainly heavy nuclei. The energy fluctuations in the hadronic component of air showers at $E \ge 10^6$ GeV would be expected to be much narrower than observed [see, for

example, H. V. Bradt and S. A. Rappaport, Phys., Rev. Lett. 22, 960 (1969)], and in addition the extrapolated flux should be considerably less than that observed by air-shower experiments. It would also be difficult to account for deserved muon flux above TeV energies if the composition were mainly heavy nuclei.

 14 M. J. Ryan et al., in Proceedings of the Twelfth International Conference on Cosmic Bays, Hobart, Tasmania, Australia, August 1971 (to be published).

 $15K$. Pinkau et al., Acta Phys., Suppl. 3, 29, 291 (1970).

 $16V$. A. Barger and R. J. N. Phillips, Phys. Rev. Lett. 24, 291 (1970).

 \overline{R} R. R. Amann, Phys. Rev. D $\underline{3}$, 2861 (1971).

 18 H. Cheng and T. T. Wu, Phys. Rev. Lett. 24, 1456 (1970).

 19 M. Holder et al., Phys. Lett. 35B, 361 (1971).

Neutrinos with Mass and the Decay $K_L^0 \rightarrow \bar{\nu}_1 + \bar{\nu}_1$

Saul Barshay

The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark (Beceived 14 February 1972)

One of the few exact results that would be vitiated by the recently discussed possibility of neutrinos with mass, would be the statement of the forbidden nature of the decay K_L^0 $v^2 \overrightarrow{v}_l + v_l$ because of angular-momentum conservation in the usual neutrino theory. We note that the decay $K_L{}^{\bar 0} \! \to \! \bar\nu_\mu+\nu_\mu$ could easily exist with a rate comparable to that for K_L -2γ if $m_{\nu_{\mu}} \approx 100 \text{ eV}$. The processes $\nu_l + p \rightarrow \nu_l + \Sigma^+, \ \nu_l + n \rightarrow \nu_l + \Lambda$ and $\Sigma^+ \rightarrow p + \overline{\nu}_l + \nu_l$, Λ $\rightarrow n+\overline{v}_1+v_1$ would then occur in lowest order, but at minute rates.

It has recently been suggested,¹ in connection with the unexpectedly low counting rate in the solar-It has recently been suggested, In connection with the unexpectedly low counting rate in the solar
neutrino experiment,² that neutrinos with a finite mass could be unstable. Since the empirical limit on the mass of v_{μ} is only m_{ν} < 1.6 MeV, whereas that for v_e is m_{ν} < 60 eV, the question of finite mass and possible instability is surely also relevant for ν_μ ¹. Apart from their possible instability, neutrinos with mass would vitiate the exactness of the statement that the decay $K_L^0 \rightarrow \bar{\nu}_1 + \nu_i$ is forbidden by angular-momentum conservation in the usual neutrino theory.⁴ This decay could be mediated by an effective Lagrangian density⁵
 $L_{K^{0}}$ ^{eff} = $(-\lambda m_{\nu,}\sqrt{G}_{F})[K^{0}\psi_{\nu,}]$

$$
L_{K^{0}}^{\text{eff}} = \left(-\lambda m_{\nu_{l}} \sqrt{G_{F}} \left[K^{0} \overline{\psi}_{\nu_{l}} (1 - \gamma_{5}) \psi_{\nu_{l}} + \overline{K}^{0} \overline{\psi}_{\nu_{l}} (1 + \gamma_{5}) \psi_{\nu_{l}} \right] \right), \tag{1a}
$$

$$
\Rightarrow L_{K_{L}^{0}} e^{\text{eff}} = (\sqrt{2} \lambda m_{\nu_{l}} \sqrt{G}_{F}) K_{L}^{0} \overline{\psi}_{\nu_{l}} \gamma_{5} \psi_{\nu_{l}} , \qquad (1b)
$$

where $G_F \cong 10^{-5} m_N^{-2}$ is the Fermi constant in terms of the nucleon mass m_N , and λ is a dimensionless number. In fact an effective interaction of the form (1b) would be generated in perturbation theory by a "standard" (neutral) intermediate-boson Lagrangian'

$$
L_{\psi} = \left[igm_{\psi}W_{\mu}(\partial_{\mu}K^{0}) + gW_{\mu}\overline{\psi}_{\nu} \gamma^{\mu}(1-\gamma_{5})\psi_{\nu} \right] + \text{H.c.}, \qquad (2)
$$

where m_{ψ} denotes the boson mass and g~is the dimensionless semiweak coupling, $g^2/m_{\psi}^2 = G_F/\sqrt{2}$. The two terms in (2) generate (1b) with $\lambda = 2^{3/4} g$. From (1b) we compute a rate for $K_L^0 \rightarrow \overline{\nu}_1 + \nu_1$ in terms of the effective coupling constant $f^2 = \lambda^2 (m_{\nu_1}/m_N)^2 \times 10^{-5}$,

$$
R(K_L^0 \to \overline{\nu}_1 + \nu_1) = f^2(6 \times 10^{22} \text{ sec}^{-1}) \implies 6.8 \times 10^3 \text{ sec}^{-1}
$$
 (3)

for $m_{\nu} = m_{\nu} = 100$ eV and $\lambda \approx 1$. For comparison we note the empirical $R(K_L^0 \rightarrow 2\gamma) \approx 10^4$ sec⁻¹. Thus Let m_{ν} - m_{ν} it is a fraction of a percent of (τ_{KL}) ⁻¹!

K_L^o could easily be decaying into neutrino pairs at a rate which is a fraction of a percent of (τ_{KL}) ⁻¹!

Together with strong interactions, (1b) generates the following processes in lowest order⁸:

$$
\nu_1 + p \rightarrow \nu_1 + \Sigma^+, \tag{4a}
$$

$$
\nu_i + n \to \nu_i + \Lambda, \tag{4b}
$$

1008

and

$$
\Sigma^+ \to \overline{\nu}_1 + \nu_1 + \rho, \qquad (4c)
$$

$$
\Lambda - \overline{\nu}_1 + \nu_1 + n. \tag{4d}
$$

However, one immediately calculates that these effects are minute because of the smallness of

$$
m_{\nu_l}.\text{ For process (4a)}
$$
\n
$$
\frac{d\sigma}{dt} = f^2 \left(\frac{G_{K^0 \Sigma^+ \rho^2}}{4\pi}\right) \frac{F(t)}{4} \frac{t[t - (m_{\Sigma} - m_N)^2]}{[t - m_K^2]^2 (s - m_N^2)^2}
$$
\n
$$
\Rightarrow 0.8 \times 10^{-50} \text{ cm}^2 (\text{GeV}/c)^{-2} \tag{5}
$$

for a 10-GeV v_{μ} with $t \approx - (m_{\Sigma} - m_{N})^2 = -(0.250$ GeV/c)² [$F(t) \cong F(0) = 1$] and $(G_{K^0\Sigma^+ \rho}/4\pi) \cong 3$,⁹ and

for the above value of $f^2 \cong 10^{-19}$ corresponding t for the above value of $f^2 \approx 10^{-19}$ corresponding to m_{ν} = 100 eV.⁷ This is to be compared with the corresponding $d\sigma/dt$ for $\nu_{\mu} + n \rightarrow \mu^{+} + p$ of about 10^{-38} cm² (GeV/c)². Similarly for process (4c) one computes a rate of about 0.06 sec⁻¹ which may be compared with the rate for Σ^- + e^+ + $\overline{\nu}_e$ $+n$ of about 0.7×10^{7} sec⁻¹.

Since we have noted that $R(K_L^0 - \overline{\nu}_\mu + \nu_\mu)$ could be comparable to $R(K_L^0-2\gamma)$, it is amusing to inquire into the contribution of the neutrino-pair intermediate state to the imaginary part of the amplitude for K_L^0 + μ + μ , given the problem
surrounding this amplitude at the moment.¹⁰ surrounding this amplitude at the moment.¹⁰ Apart from the weakness of the "diagonal"¹¹ amplitude for $\overline{\nu}_{\mu} + \nu_{\mu} + \mu^{+} + \mu^{-}$ in the conventional theory, the exact V-A structure causes the contribution from this intermediate state to vanish. However, remembering the recent admonition of Gellever, remembering the recent admonition of Gell
Mann *et al*.,¹¹ "No connection between this (diago nal) process and the weak interactions should be assumed" a priori, we may parametrize an anomalous interaction, $zG_F \overline{\psi}_{\mu} \gamma_{\lambda} \psi_{\nu} \overline{\psi}_{\nu}{}_{\mu} \gamma^{\lambda} \psi_{\mu}$, and compute the value of z which makes the magnitude of the neutrino-pair contribution equal to that of the two-photon contribution. We find $|z|$ $\approx 1.6 \times 10^4$. Such an anomaly can presumably be ruled out by current or future experiments on the process $v_{\mu} + Z \rightarrow v_{\mu} + \mu^+ + \mu^- + Z$ in the Coulomb the process $\nu_{\mu} + Z \rightarrow \nu_{\mu} + \mu^{+} + \mu^{-} + Z$ in the Coulfield of the nucleus $Z^{\,12,13}_{\,12}$ However, note that since the product fz occurs, increasing f by 10 $(m_{\nu\mu} = 1 \text{ keV})$ reduces $|z|$ to $\approx 1.6 \times 10^3$.
Clearly, the transition⁷ $K_L^0 \rightarrow \bar{\nu}_t + \nu_t + K_s^0$, with

virtual neutrino-pairs predominating over the mass-shell intermediate state, represents a realization of an effective superweak model of realization of an effective superweak model of
CP noninvariance,¹⁴ except for the possible detectability of the decay $K_L^0 \rightarrow \overline{\nu}_1 + \nu_L$.

In summary, we note that if one entertains the

notion of neutrinos with mass of the order of a few tens of electron volts, then the decay K_L^0 $-\overline{\nu}_1 + \nu_1$ could be occurring. How would one exclude this possibility? Given the surprises that neutral-K-meson decays have already held for physics, it might be amusing to consider this que stion.

I thank P. Oleson for discussion.

¹J. N. Bahcall, N. Cabbibo, and A. Yahil, Phys. Rev. Lett. 28, 316 (1972).

 2 R. Davis, Jr., L. C. Rogers, and V. Rodeka, Bull. Amer. Phys. Soc. 16, 681 (1971).

 ${}^{3}\text{A}$. Rittenberg et al., Rev. Mod. Phys. Suppl. 43, 1 (1971).

 $\rm ^{4}T.$ D. Lee and C. N. Yang, Phys. Rev. 105, 1671 (1957); A. Salam, Nuovo Cimento 5, 299 (1957); L. Landau, Nucl. Phys. 3, 127 (1957).

³This interaction is CP and T invariant, whereas ${\rm terms\,\, like\,\,} i a K_{L}^{0} \overline{\psi}_{\nu_{\pmb{i}}} \psi_{\nu_{\pmb{i}}} \,\,{\rm or}\,\, i b K_{S}^{\mathbb{G}} \overline{\psi}_{\nu_{\pmb{i}}} \gamma_{\,5} \psi_{\nu_{\,\pmb{i}}} \,\,{\rm would\,\, break}$ this invariance. $[N]$. Brene and J. Dethlefsen (private communication) have pointed out that the neutral W_u may of course have both Hermitian and anti-Hermitian parts, which can even mutually couple with CP and T noninvariance, thus generating an effective interaction $ibK_S^0\overline{\psi}_{\nu_1}\gamma_5\psi_{\nu_1}$. Note that the terms in (1a) without γ_5 are not generated by (2). If one replaces m_W in the first term of (2) by the decay constant for $K^+ \rightarrow \mu^+ + \overline{\nu}_\mu$, f_k , then λ becomes $(f_k/m_N)(4.5\times10^{-3})\approx10^{-3}$. A ν_{μ} mass of ≈ 100 keV then gives (3).

⁶Effective or primary neutral-lepton current couplings to hadrons are severely limited in strength by the empirical absence of $K^+\rightarrow \pi^+ + \bar{l}+l$ (see Ref. 3). The interaction (1) does not contribute to these because K^+ + K^0 $+\pi^+$ strongly. The distinct feature of the interaction (1) is, of course, that the smallness of the effective coupling is related to the smallness of m_{v_1} , rather than being ad hoc.

 7 Brene and Dethlfsen, Ref. 5.

 8 If the π^{0} participates in an interaction similar to (1b) then the process $v_1 + p \rightarrow v_1 + p$ would also be generated at a minute level.

⁹ Private communication from Y. A. Chao; Y. A. Chao and E. Pietarinen, Phys. Rev. Lett. 26, 1060 (1971).

 10 A. R. Clark, T. Elioff, R. C. Field, H. J. Frisch, R. P. Johnson, L. T. Kerth, and W. A. Wenzel, Phys. Rev. Lett. 26, 1667 (1971).

 11 M. Gell-Mann, M. L. Goldberger, N. M. Kroll, and F. E. Low, Phys. Rev. 179, 1518 (1969).

¹²W. Czyz, G. C. Sheppey, and J. D. Walecka, Nuovo Cimento 34, 404 (1964).

 13 D. H. Perkins, in Topical Conference on Weak Interactions, CERN, Geneva, Switzerland, 14-17 January, 1969 (CERN Scientific Information Service, Geneva, Switzerland, 1969), p. 6.

 14 L. Wolfenstein, Phys. Rev. Lett. 13 , 562 (1964).

1009