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We report what we believe are the first observations of metal-vacuum-metal tunneling.
A field emitter is brought close to a metal surface and the current-voltage characteristic
is measured in three regions: the Fowler-Nordheim region, the intermediate region, and-

and the metal-vacuum-metal region.

Certain problems encountered in the investiga-
tion of thin-film tunnel devices' might be illumi-
nated by studying the characteristics of vacuum-
insulated tunnel diodes, which we designated as
metal-vacuum-metal (MVM) diodes. In particu-
lar, the advantage of being able to (1) change
electrode spacing conveniently, (2) eliminate the
effects of insulator material, and (3) characterize
carefully the two electrode surfaces, could be ex-
ploited in testing the present theoretical frame-
work of tunneling. We report here what we be-
lieve are the first observations of MVM tunneling
and the transition to field emission.

The instrument employed in this study is de-
signed to measure the microtopography of a met-
al surface by scanning a field-emission point
close to the metal surface.3 The field emitter
is mounted on a piezoelectric crystal which is
part of a servo system designed to keep the emit-

ter a constant distance of a few hundred angstroms

above the surface. Two other piezo units scan
the emitter in orthogonal directions parallel to
the surface. The instrument, called the Topogra-
finer, produces a high-resolution topographic
map of the surface.

In present experiments, the servo loop and
scanning piezos were disconnected and a carefully
regulated adjustable voltage was applied to the
altitude piezo in order to move the tungsten emit-
ter very close to the platinum surface. The in-
strument is mounted on a low-vibration stand with
a vertical period of 1 Hz and is surrounded by an
acoustic shield. During the tunneling (MVM) ex-
periments reported here the instrument was re-
motely operated to reduce acoustic noise further.

In all of the measurements, except Fig. 3, the
field at the emitter surface was fixed by passing
a constant current through the emitter. For a
fixed emitter field, the emitter-to-surface volt-
age has been determined by solving Laplace’s
equation in prolate spheroidal coordinates.* By
comparing this calculation with experimental
curves for emitter-to-surface voltage versus dis-
tance it is possible to determine the emitter radi-
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us of curvature.? When the emitter-to-surface
spacing is less than one tenth of the emitter radi-
us of curvature, the voltage approaches a linear
function of emitter-to-surface spacing (parallel-
plate approximation), and the field at the surface
of the emitter can be determined directly from
emitter voltage versus distance. Figure 1 shows
the emitter-to-surface voltage as a function of
piezo voltage (distance) for a situation where the
emitter has previously contacted the surface, re-
sulting in flattening of the emitter apex. After an-
nealing (cleaning), the flattened emitter produced
a curve with a long linear region giving an excel-
lent opportunity to determine the field strength at
the surface of the emitter. The structure in the
curves is due to the individual wires on the ten-
turn potentiometer used to vary the piezo voltage.
The field strength determined from Fig. 1 was
0.381 V/A with an estimated accuracy of 5%.
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FIG. 1. Emitter-to-surface voltage versus piezo vol-
tage. The piezo element, calibrated interferometrical-
ly, has a deflection factor of 13.0 A/V. The slope of
the straight-line portion of the left-hand side of the
curves gives the field strength at the emitter surface
directly.
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Since the relationship between voltage and field strength was known, it was then possible to measure
emission current versus applied field and to make a Fowler-Nordheim plot in terms of the field. We
neglect the small change in average work function with spacing.

The Fowler-Nordheim (F-N) equation can be written in the following logarithmic forms5:
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where F is the field strength in volts per centimeter, 7 is the field-emission current density in am-
peres per square centimeter, A, is the effective emitting area in square centimeters, ¢, is the emitter
work function in electron volts, and v(y) and #(y) are slowly varying elliptic functions. The intercept of
the F-N plot is the first term on the right-hand side of Eq. (1). The slope is obtained by taking the de-
rivative of Eq. (1) with respect to 1/F and is given by

logl%,;=log<1.54><10'6 (1)

m==-0.296¢,32s(y). (2)

Application of Egs. (1) and (2) to the F-N data yield the following values: ¢ =4.60 eV, A,=18.9X1071°
cm?, The techniques discussed above were used to determine the emitter radius (8100 A) and the field
strength used in the F-N plot (0.381 V/A). The average work function at the apex of a tungsten emitter
is somewhat higher than the overall average work function for tungsten due to the presence of the high-
work-function (110) region at the apex. The value obtained is very reasonable. After accounting for
the fact that the F-N data were taken when the 8100-A emitter was only about 2000 A above the surface,
the effective emitting area has been found to be consistent with the emitter radius.?2 The details of the
above analysis will be given in a forthcoming publication.? They have been summarized above to dem-
onstrate that the F-N equation adequately describes the operation of the instrument when the emitter is
located a few hundred angstroms above the surface and to establish the connection between field emis-
sion and MVM tunneling. Future experiments involving an extremely flat surface, a very smooth emit-
ter of uniform work function, and further reduction in noise and vibration are expected to provide a
critical test of the F-N equation.

Simmons has derived a general expression which describes the current density versus voltage over
the full range from close-spaced MVM to field-emission tunneling.® The most general expression for
current density, applicable to barriers which include the image potentials at both surfaces, is given
by®

e
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A= ——E—h——(—gl’ B=1, ¢@= S fslz(p()Q dx, When measuring emission current versus spac-

ing, unless electrode position control is extraor-
dinarily good, it is experimentally advantageous
to employ the constant-current mode of operation
and measure interelectrode voltage versus spac-
ing. We therefore plot in Fig. 2 the calculated
voltage needed to maintain a constant emission

@(x) is the potential energy of an electron between
the two metal surfaces, S, and S, are the dis-
tances from the first surface to the place where
the potential energy equals the Fermi energy near
surfaces 1 and 2, respectively, AS=S,-S,, m,

is the electron mass, and V is the potential be-
tween the two electrodes. For the low-voltage
(MVM) range (eV < ¢,),

(4)

2
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which gives the expected linear dependence of
current density on applied voltage.

Equations (3) and (4) predict an extremely
strong dependence of J on electrode spacing.

current versus distance. Note the linear F-N
region (F =0.33 V/A), the sharp drop in potential
in the transition region, and the extremely low-
voltage MVM region. The dashed curve does not
represent actual data, but rather depicts our ex-~
perience, when decreasing the spacing, of being
able to reduce the potential smoothly to about 8 V
and then suddenly observing a precipitous drop
in the potential to less than 1 V. This effect
clearly has metrological applications in that it is
possible to use this device as a noncontacting
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FIG. 2. Calculated tunnel voltage versus distance for
a constant tunneling current density of 50 A/ cm?. The
dotted line depicts our experience in attempting to mea-
sure this function. As the emitter approached the sur-
face, the emitter voltage decreased smoothly along the
F-N curve until V,=8 V, when V, suddenly dropped pre-
cipitously to less than 1 V.

probe capable of determining the position of a
metallic surface within perhaps 3 to 6 A (one to
two atom layers).

A second more quantitative measurement was
made by biasing the elevation piezo so as to place
the emitter within a few tens of angstroms of the
surface and using an additional low-voltage power
supply to move the emitter very close to the sur-
face. The total piezo voltage was measured with
a digital voltmeter with a precision of 0.1 V (~1.3
A). Thus it was possible, during an extremely
quiet period, to move the emitter by about 1-A
steps. Mechanical vibrations on the angstrom
level were the limiting factor. After setting the
spacing, the emitter-to-surface voltage was
scanned over an appropriate voltage range, the
current was measured with an electrometer, and
the current-voltage characteristic was plotted
with an X-Y recorder. The results are shown in
Fig. 3. We have chosen three regions: the lower
(closest) limit of the F-N regime, an intermedi-
ate spacing, and one near the upper limit of MVM
regime. The gap values were determined from
the current density and the F-N and MVM theo-
ries. The MVM tunneling resistivity o(= V/J) is
approximately 4x10°® Q cm® The current-volt-
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FIG. 3. Tunneling current versus voltage character-
istie for three different emitter-to~surface spacings.
Note the linear MVM characteristic.

age characteristic is linear in the MVM region
as expected.

A new instrument for MVM studies has been
constructed and is now under test. The scanning
system has been eliminated, resulting in a much
more rugged device. Coarse adjustment is made
with a helium-operated, thick-walled diaphragm
so that the unit can be operated in a cryostat. In
addition, further precautions against shaking and
vibration will be needed before precision experi-
ments can be performed. Such a device should
have many applications. The effect of crystallo-
graphic orientation of the electrodes, with due
attention to surface cleanliness, could be readily
studied. Lambe and Jaklevic” have shown that in-
elastic tunneling can be used to study the vibra-
tional spectra of molecules imbedded in an oxide
matrix. MVM tunneling could be used to study
the vibrational spectra of molecules, and perhaps
atoms, adsorbed on clean, well characterized,
single-crystal surfaces, possibly extending to the
study of electronic excitation of adsorbed species.
Other applications abound.
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