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The electrical conductivity in a toroidal plasma has been calculated, using the exact
Fokker-Planck operators for electron-electron Rnd e1ectron-ion COBisions. It is found
that the nonlinear effects of the electron-electron operator are of order r!R, where r
Rnd B are the Dlinor Rnd Ina)ol radii of R Qllx SQrfRce ~ The condQctlvitg cRn be written
as o = o~, nil- —s(r/ R)

/ +0(r!R)].

Recently, Salat' and Galeev' have attempted to
improve on the Lorentzian-model calculations of
Hinton and Oberman' for the electrical conductiv-
ity of a toroidally confined plasma. The improve-
ment has been sought by including a Bhatnagar-
Gross-Krook model operator for electron-elec-
tron collisions in the calculation. Corrections
given by Salat and Galeev seem, however, to dif-
fer.

In this paper the problem has been reconsid-
ered utilizing the Fokker-Planck operators for
both electron-electron and electron-ion colli-
sions. 4 As in Ref. 3, it is assumed that the Inag-
netic field configuration can be approximated as
B(r, I) =B,[1+icos(~l/I. )], where L= 2r/R and
L = 4&'R/t (where r and R are the minor and ma-
jor radii of a flux surface and & is the rotational
transform). A power-series assumption for the
solution of the kinetic equation in 6 fails to satis-
fy the boundary conditions in the "trapped-parti-
cle" region, where the pitch angle is 8 ~ n/2+ V6.
Therefore, two separate solutions for trapped-
and untrapped-particle regions are found which
are then matched' to yield a uniformly valid first
approximation to the distribution function for a
parallel electric field. Our main result, in ac-
cordance vrith the conjecture of Ref. 3, is that
the electron-electron operator mainly restores
the Spitzer conductivity factor and its nonlinear
effect due to toroidal geometry is of order h.
Salat and Galeev, however, have also corrections
of order Es.

The electron-ion and electron-electron colli-
sion operators can be written most conveniently4
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FIG. 1. Trapped- and Qntrapped-particle regions of

the phase space.

as C„=(v„/2)(v, t,/ )'vV„~ (v'I-vv) V„E, and
&„=&„(v, h'/2n)[ 8& E' +V„V„G(E):V„V„E],where
G(E) is the Rosenbluth potential, i.e., G(E)
= JE(v') Iv' —v Id'v'. For v„and v, z we adopt the
definitions given in Ref. 3. Further, we define
a mean electron-electron collision frequency as
v„=(n/n, .) v„./Z', where 2 is the ionic charge
number. We employ the usual' coordinate system
in velocity space {r,8, y) with v = nv eos8+vsin8
x(p cosp+b sing). In the limit E/E, -v, h/I Q «1,
where E, =mv, h v„/e and I- is a sealing length,
we can assume F -I,+nF, + e'I', + ~ ~ ~, where
a= E/E, . The-E,. satisfy a set of equations de-
rived by Frieman. ' A rederivation with some
corrections is also given by Daybelge. Special-
izing to Rn RxlsyII1IDetl lc torus Rnd RssuIQlng Eo
to be Maxwellian, the kinetic equation for the av-
eraged E„ that is E, =-f= (2s) %"E,{ 8v, y)dy,
becomes'

af sin8 aB af
5 cos8—+ 'U

ei' Bg " " m
"-vD &.+~88

Here, we are interested in finding a particular solution of (1) for the driving force E,~. The new oper-
ator in (1) can be written as

3 IC„=v„v,h' [16vE„E,+V„V„G(F„):V„V„F,+V„V„G(F,):V„V„Es]dy.ee ee (2)
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The dyads V„V„E„=g,(u) vv+g, (v) I and V„V„G(E„)=h, (v)vv+h, (u} I are given in Ref. 4. We will adopt
the boundary conditi. ons as stated in Ref. 3 and note that the pitch angle 8 is related to the ratio A. of
magnetic moment to kinetic energy as A. = sin'0/B(l, n, P). We also define a new phase-space variable
x as x -=cos8=+[1-AB(l)]"', which will be used in the sequel.

The shaded area in Fig. 1 is the trapped-particle region. The equation of the separatrix is A. = 1/B,„orx = + [L/(1+ &)I"' sin(~E/L). For convenience we define e = KL = (2r/8)"'
On substituting the assumed variation of the magnetic field in (1) and transforming to the new vari-

ables x and s =—I/I, we find

~f 27T sin 2&8 1 —x ~f 5gg7j, — —
~ E!!5~g 8E~+6 + &e~+ee& = ~y+g2 cos2g~ @ 8~ p ~ 8f 88

Assuming that the mean free path is much longer than the magnetic field period L, we find the parame-
ter q-=v„.L,/v, „=v„/cu!„„to be much smaller than unity. Now we want to obtain an asymptotic solu-
tion for f to lowest order in both rI and e. Although the second term in (3} suggests that f might be ex-
panded in only even powers of e, such an expansion would not be compatible wi.th the conditions in the
trapped-particle region, which is of order e. The boundary-layer-like nature of this region necessi-
tates a specialized solution valid in this region to be matched and complemented by the outer solution.
Calculation of the higher approximations in g is complicated by the existence of another boundary lay-
er between the trapped-. and untrapped-particle regions. Here we will not deal with this problem.

We expand the distribution function f as f-fo+ qf, + ~ ~ ~ and obtain from (3) the following:

8f, , m sin2ms 1-x' 8f,I,-=' +e'—
8s 2 1+e' cos'ws x

where

840 O'I ! g

+@8(f())= &g~ 2 16&E~f()+VIV„jf(x ~ 6) ) v —v (!f 'U:VqV„Eg+

8'f~ 2h2 8 x 8
+(v'h +h ) '+ ' ————y . (7)e ~v 5 %c

Equation (4) shows that when x is far from the trapped-particle region, f, is independent of s to order
e'. Neglecting terms of order e, we can eliminate the first term in (5) through integration over s
from zero to one, and consideration of condition (b). The result is the familiar Fokker-Planck equa-
tion4 for fully ionized plasma in straight geometry, whose solution ean be found by successive approx-
imations. " Here we will quote the familiar result for (fo),„,~:

S"1
(fo) Ogggg

=
& &

xVEy Q 5 (X)83~2 (u ),

ls a Sonlne polynomial of order 2 snd degree y' u = pgg /2j!'pT' and g ) = f @ (s) ds
&th approximation the coefficients 5"(~) are found as 8"=( 1)"3/7 /2L! where D denotes the determi
nant of an N xN matrix a;, , and Do„ is the determinant of the matrix resulting when the 0th row and
rth column of a, , is deleted. Using the matrices H„,"and B„,"of Ref. 4, we ean write a„=B,,"+H,,'.

The form of the outer solution (8) indicates that it cannot satisfy the inner-boundary condition (b).
In fact it breaks down when x -c. Now we introduce a magnified inner variable v appropriate to the
region of trapped particles by setting v =x/e and f(v, x;e; q) = II(v, r; e; q). Accordingly, the original
equations (4) and (5) are transformed to (expanding again II = IIO+ qli, + ~ ~ ~ )

&BIO n . ].~IIOI.II, =- ' + -sin2ms '- = O(e'),
~8 2 7 ~T

L, ll +~ '—
(

'" /I+"- ' '=O(~ ')
2~!,e ( v„e 87'
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In obtaining (10) we used the fact that application of (&„&)g;,& on the kernel of the integ»I operator
creates terms of order one and higher (under transformation r =z/e). Equation {9)has the character-
istics p =7'+-,'cos2ns = const, which are consistent with (d). By transformation f»m (s, 7) «(s~ 0~

{9)yields L,ii = 911 (s, g)/Bs =Q(g2). Thus, to order e, IIO is independent of &. The c»ves 4=co»t
differ from X = const only to order c'. On the separatrix ( = -,'. From (10) we find

where 7 stands for {$—acos2vs)"'. The first term of (11) can be annihilated through integration over
8, since for untrapped particles D, is periodic in s. On neglecting terms of order & there results
BIIO/9)+2)9'110/9$'=0. Its solution for untrapped particles is II, =C, +C,WE Th. e constants C, and C,
ax'e to be found from matching and boundary conditions: Matching with the outer solution for x - I or
T ~ 0 yields

On the separatrix the solution for trapped and untx'apped particles must be identical. Characteristics
in the tx'apped-particle region show that here IIo is an even function of x. However, outside this xegion
IID is odd. Therefore, 1I, on the separatrix is zero, and C, = —C,jv 2. Furthermore, it follows from
condition (e) that inside the trapped-particle region II, must vanish, as it otherwise would perturb the
particle-number density. The final result for f~, correct to first order in e, is then

/if 2
—sgn(z) " gE„Q 6"8,&,&")(u*) —~ + x'+ e' (untrapped particles)

m=0

0 (trapped particles).

The average velocity of eleci1 ons a't 8 is

V(s) =4'�' dz j zf, (x, v)e'den.
6 SlQÃg

We can write the final result for V(s) using the orthogonality of Sonine polynomials as

e(E(() 5' 3
V(s) =- 1 — 8+0(a') n.

m ~ 2 2

(13)

For comparison with Ref. 3 we note that 3e/2v 2 =1.06Kb.. When v„=v„, it is found that 5S~'=1.975
x(3w"2/4v„. ). In the Lorentzian bmit, i.e., v„«v„, 5q,o= 8/&' 3v„. Finally, the parallel electrical
conductivity o =-j/(Ep ), where j is the current density driven by the parallel electric field, can be writ-
ten for Z 1 and 5 tlq as

where 0 sp
= 1.975(3rr"2/4)Ne'/mv„ is the Spitzer conductivity.
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Direct Observation of Spin-State Mixing in Superconductors*
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We observe a peak in the tunneling conductance between two very thin superconducting
aluminum films in an intense parallel magnetic field at a voltage V= (d, &+A2-2u8)/e.
The magnetic field dependence of this peak identifies it as that predicted by Zngler and

Fulde for spin-state mixing in superconductors. The spin-orbit scattering rate h =h/
3&T,O obtained from this measurement is approximately 0.1.

This experiment reports the direct detection of
the effect of spin- orbit scattering on the spin den-
sity of states of a superconductor. The quasipar-
ticle energy states in superconducting Al are
split in a high magnetic field by the interaction
of the field with the spi.n magnetic moment of the
quasiparticles. This splitting was recently dem-
onstrated' by conductance measurements on Al-

Al, O, -Ag tunnel junctions (Al thickness = 50 A).
The measured conductances could be analyzed
surprisingly well by assuming simply that the
BCS' density of states was split into spin-up and

spin-down parts displaced in energy by ~ p. H ()i
being the electron magnetic moment). The suc-
cess of this analysis implied that there were no

significant interactions to mix the spin states.
However, measurements" of the critical mag-
netic field II, of such films indicated that spin-
orbit scattering, though small in Al, is not neg-
ligible. In fact, theoretical fitting' of values of

H, (T) gave a spin-orbit scattering parameter h

=)r/3br„=0. 2, large enough to have had a signif-
icant effect on the tunneling density of states.
Here 2h is the energy gap of the superconductor
and 7,~ is the spin-orbit scattering time.

Recently Engler and FuMe' succeeded in cal-
culating the density of states of a thin supercon-
ductor in a high magnetic field for various val-
ues of b. For 5=0 and a high magnetic field, H
=0.6(L/p), Fig. 1(a) shows the calculated densi-
ty of states N(E/t ). As expected, the density of
states for each spin direction is just half of the
BCS density of states and is shifted in energy by
+ p, IJ for spin up and by —p.H for spin down. Fig-
ure l(b) shows the interesting theoretical result
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FIG. 1. Theoretical density of states for a supercon-

cuctor in a magnetic field II=0.6b /p. (a) With h =0,
N, (E/b) splits into two BCS-like curves, one for each
spin direction shifted by ~ pH. (b) With some spin-or-
bit scattering, b =0.2, the spin states are mixed with
some spin-up states found near the energy of the spin-
down peak.

of increasing b. Here the fieM is the same but
5 = 0.2 and the CRlculRted behav1or ls qualitative-
ly different, the spin states being partially mixed.
The states near E/b, =1 —)iH/b. , for example,
are no longer only spin down, as there is also a
small spin-up peak. As 5 increases, the spin
mixing increases, and the peaks move closer to-
gether and become more nearly equal in magni-
tude. By the time 5=5.0, spin is no longer a
good quantum number, and N(E/6) has only a
single peak, which is naturally independent of H
and approaches closely the single, unsplit, BCS


