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Exact Ground State of Some One-Dimensional N-Body Systems with Inverse ("Coulomb-Like" )
and Inverse-Square ("Centrifugal" ) Pair Potentials
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%e exhibit the exact ground state and the corresponding binding energy of the systexn
composed of N (nonidentical) quantum-mechanical particles interacting in one dixnension
via the potential V;,(x;-x,.) =g(x&-x,.) + (fi- f) (x;-x ) . We discuss some special
choices of the constants f; and g that yield examples of possible physical interest.

Exactly solvable problems are interesting mathematically and may be useful as approximate sche-
matizations of real models or to test approximation techniques. But even in one dimension, the num-

ber of exactly solvable quantum-mechanical many-body models with two-body forces is scarce; in

fact, besides the trivial case with oscillator forces, only two solvable examples are known: the sys-
tem of N equal particles interacting pairwise via 6-function potentials and that with inverse-square
("centrifugal" ) potentials (possibly also with oscillator forces). ' We present here another class of
models whose exact ground-state wave function, and the corresponding binding energy, can be explicit-
ly exhibited.

We consider the system of N nonrelativistic quantum-mechanical particles of equal mass m interac-
ting in one dimension via the pair potential given in the Abstract. The Hamiltonian of the problem is

N

&=-2 Zs, + Z [g(«-x,) '+(f;-f;)(x&-x,) '].
»=1 X»»&j=1

We assume hereafter that g) —5'/4m, to prevent
two-body collapse, ' and we restrict attention to
the sector of configuration space characterized
by the restrictions

that g is normalizable; necessary and sufficient
conditions for this are discussed below).

The energy of this state is

x (x (x ~ ~ ~ ~ (x
1 2 3 E = —(h'/2m) Q q (7)

It is sufficient to consider this sector because
the singular "centrifugal" interaction forbids the
particles from overtaking each other, so that
their ordering is a constant of the motion. '

The ground-state wave function of this system
(in the c.m. frame) is

»-1

The proof of these assertions can be performed
verifying that (( and E satisfy the Schr5dinger
equation

g(x„x„~~ ~, x„)=Cz"exp[ Q q,x, ],
»=1

with
N

z= Q (x; —x),
i& j~1

(3) The computation is essentially trivial if the fol-
lowing identities are used':

Q s'z/sx, '=0,

a = a[1+(1+4mg& ')'"]
N

z ' Q (sz/sx, )'=2 Q (x; —x, ) '.
i& j=1 (Qb)

q, =n(I 'a '(f, —N ' Q f,).

C is a normalization constant (we assume here

The fact that the eigenfunction (3) corresponds
to the ground state is implied by the remark that
P has no zeros besides those due to the presence
of the (singular) "centrifugal" potential that forc-
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Q q;)0, j=1, 2, 3, ~ ~ ~, N-1,
j= 1

(10a)

es (I( to vanish whenever x; =x(.
It is easy to verify (for instance going over to

the N —1 independent variables y( =x...—x,)
that the necessary and sufficient conditions for

& to be normalizable are

creasing the overall attraction so as to bind the
N-body bound state (it is easy to convince one-
self that the system described above, corre-
sponding to E = 0, tends to break up into n two-

body clusters}.
Note that this system exhibits saturation, for

its ground-state energy is

or, equivalently,

Q q;&0, j=2, 3, 4, ~ ~ ~, N
5= j

E = Bmh 'a 2j'(N+4e+2e').

(ii) Let

f(=-f&, f o

(12}

(13)

Hereafter we consider only models that satisfy
these conditions.

It is plausible to conjecture that if the con-
stants f, , which determine the strength of the
"Coulomb-like" part of the potential, violate the

conditions implied by E(ls. (10) and (6), the sys-
tem does not possess an N-body bound state.
Note that these conditions of boundedness are in-

dependent of the value of the coupling constant g
characterizing the strength of the centrifugal in-

teraction that plays essentially the role of a
scale parameter.

We have implicitly assumed that the "centrifu-
gal" potential is present, i.e., that g does not
vanish. All results remain valid (with g=0, a
= 1) if the "centrifugal" potential is replaced by

an infinitely repulsive zero-range potential or,
equivalently, by a boundary condition forcing the
wave function to vanish whenever the coordinates
of two particles coincide.

Special choices of the constants f, characteriz-
ing the "Coulomb-like" part of the interaction
are worth considering. We mention four repre-
sentative examples.

(i) Assume that N is even. Let

f, = ~(-)("j[1+e(5„+5(„)],f)0, e) 0. (11)

For e =0, the interaction may be described as
follows: Odd-numbered particles do not interact
between themselves, they attract the even-num-
bered particles to their right via the potential
—f/Ix; -x& I, and they repel the even-numbered
particles to their left via the potential f/Ix, -x& I;

even-numbered particles behave accordingly,
i.e., they do not interact between themselves,
they attract the odd numbered particles to their
left, and they repel the odd-numbered particles
to their right. However, for a=0, the choice
(11) violates the boundedness conditions (10}al-
though it satisfies them for any positive e. The
presence of e modifies only the interaction of the
first and last particles with all the others, in-

Then the interaction is attractive for every pair,
and its strength is larger among particles that
are farther apart:

v, ,(x, -x, ) =-jli - jl/lx, -x, l.

The ground-state energy is

E = —~(4m' 'a 'f 'N (N + 1)(N - 1).

(iii) Let

f=f/i, f o

so that the interaction. is attractive for every
pair:

I „(x(-x,) =-fli-i I/ij I», -«, l.

The ground-state energy is then

(14)

(15)

(18)

f, = —-',e,(2e, +e,),

f, =-.'e, (e, —e,),
1f, =-,e,(e, +e,),

with

e, =e,e,/(e, +e,),

(19a)

(19b)

(19c)

(20)

e, and e, arbitrary. Then the interaction be-
comes

3

Q e(e, /lx, -x, l,5) j=1 (21)

E E
E = —~II 'a j'[Q i ' —N '( Q i ')'], (18a)

5=1

so that, at large N,

E = —((('/12)mS 'a 'f '[1+O((lnN)'/N)]. (18b)

It is remarkable that in this case, as N diverges,
the ground-state energy tends to a finite limit, so
that the binding energy per particle vanishes
asymptotically. This is of course due to the fact
that additional particles interact more and more
weakly.

(iv) Let N=3 and
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i.e., it corresponds to the Coulomb interaction
of three particles of charge e„e„and e,. It is
then easily seen that the boundedness conditions

(10) yield

and the corresponding energy is
2 2$, (e, +e,e, +e, )E = —~3' a e e,
(e ~ +e3)

(23)

e,e, &Q (22a)

je, l &2le, l
or le, l&2le, l. (22b)

Thus, if these conditions are satisfied, the

ground-state of the system is the three-body
bound state described by the function p of Eq. (3),
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Interpretations of the "X-point paradox" are narrowed significantly by recent experi-
mental findings. Penney's proposal that the paradox originates in effects of room-tem-
perature radiation f~&»ng on the disk is disproved. Further, by rotating the disk through

the helium rather than rotating the liquid past the disk, the paradox is found to be depen-
dent only on relative rotation. This invariance to absolute rotation of helium evidently
eliminates any role of the rotational properties Per se of the liquid.

Although by no means offering a complete reso-
lution to the 4-point rotation paradox, the two ex-
perimental results reported here do greatly nar-
row the scope of the problem. One should be re-
minded that the rotation paradox" concerns the
observed temperature dependence of torque ex-
erted by rotating liquid helium on a Rayleigh
disk, in particular the decrease of this torque
toward zero as the temperature is increased to-
ward the a point.

One of the present findings eliminates the ef-
fects of radiation as recently proposed to explain
the paradox. The other reveals that A. -point phe-
nomenon is in fact rooted in other than the rota-
tion properties Pn se of liquid helium.

(1) Penney's radiation hyjothesis. —Recently
Penney' suggested that the rotation paradox might
be attributed to the action of room-temperature
radiation falling upon the disk. The heating gen-
erated over the surface of the disk by such radia-
tion would set up internal convection currents be-
tween normal fluid and superfluid, and these in
turn would modify the individual fluid flow pat-
terns about the disk. According to Penney's cal-
culations, the process would result in decreased
net torque exerted upon the disk similar in behav-
ior to the observed effect. This includes the to-

tal disappearance of torque at the X point.
Perhaps the least convincing aspect of the ar-

gument is the apparent strictness placed upon the
amount of radiation incident upon the disk. Rath-
er than comprising a "saturation" effect (and thus
some minimum threshhold), the process requires
a specific level of radiation to suppress the
torque at the ~ point. Immediately the explana-
tion hangs upon the fortuitous values of room-
temperature radiation balanced against other fac-
tors.

Clearly a test by direct experiment was re-
quired. A helium- temperature "radiation envel-
ope" was provided for the test region by painting
the outer surface of the original precision glass
rotor and the supporting glass tube with Aquadag.
Thus, except for two small "windows" left in the
Aquadag painting as observation apertures, the
rotating liquid-helium sample and suspended disk
probe were completely shielded from all but liq-
uid-helium-temperature radiation. Such a geom-
etry permitted the original experimental method
of observing disk behavior by measuring deflec-
tions of a beam of light reflected from the disk
surface. (See Ref. 2, Fig. 1 for the basic system
to which Aquadag shielding was applied. )

One small circular hole was provided in the
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