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Rnd Rxe using data tRken on it to evaluate the con-
stant terms contained in g and subsequently us-
ing that resulting p. to arrive Rt a prediction for
the BCS region. We 11ave used the value jl/(Hc2
—H) =0.021 at T =O'K for the theoretical lines in

3(a), 3(b), 3(c), and 3(d). Although this is only
an extx'Rpolation of low- temperatux'e results,
there is surprising agreement between the theo-
retical and experimental slopes fox the gapless
region. The experimental slopes in the BCS re-
gi.on H,e above the theoretical curve. However,
the temperature dependence appeRrs to be simi-
lar.

IQ conclusion Vfe find the predicted BCS RQd

gapless regions in the fieM dependence of the Rt-
tenuation of both longitudinal Rnd shear waves.
At lower temperatures ve find relative agree-
ment between experi. ment and theory in the shapes
of the cu1ves. There 18 qualitative Rgreement
with the temperature dependence of the slopes in
the gapless region. In the BCS region these
slopes follow the shape of the temperature-de-
pendent theoretical curves. Clearly more theo-
retical work is necessary to improve the exact
understanding of the regimes as vrell Rs the tran-
sition fx'oxn one to the other.
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New Perturbation Theory for Low-Energy Electron-Diffraction Intensities
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~ndard pe~r&tion theory applied to the low-energy electron-diffraction problem
does not appear to give accurate results even when carried to second order. A new

scheme, xenormalized forward-scattering perturbation theory, retains the advantage of
being fast to execute, but at the same time is very accurate. The new theory is subject-
ed to the stringent test of comparison with exact results. for a realistic model of the cop-
per (100) surface.

There are two decisions to be made before
embarIt:i. ng on calculations of the diffraction of a
monoenergetic, mell-collimated beam of elec-
trons incident on a crystal surface. Firstly a
model must be postulated for the surface, in-
cluding the quantities strongly affecting the dif-
fraction process, and omitting quantiti. es that do
not strongly affect the process but are possibly
difficult to calculate. Secondly, having decided
the nature of the enviroment in which the elec-

txon finds itself, R method of solution of the dif
fraction process must be fixed upon.

In recent years it has become apparent that a
model of the sux'fRce taking Recount of the strong
elRstic scattering by ion cox'es Rnd of lnelRstlc
scattering processes (the ion-core scattering
model), ' ' when combined with sn accurate non-
perturbative method of calculation, gives good
agreement with experiment. " ' The main con-
cern of this Letter is to suggest R fast, accurate
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is determined by the elastic scattering matrix
elements V,. After an elastic scattering event,
the electron remains to be scattered again. If
the elastic scattering is taking place more rapid-
ly than absorption by inelastic scattering, i.e.,
if

V, &V;, (1)
many elastic scatterings occur, on the average,
before the electron is removed by an inelastic
scattering and the perturbation series has to be
carried to many orders. Conversely, the condi-
tion

V, «V&

says that only one or two elastic scatterings
take place, and only one or two orders of the
perturbation series are required to describe the
situation accurately.

If a successful perturbation theory is to be

found, the rule must be that all scattering with
matrix elements larger than V; must be treated
exactly. In the earlier paper' the observation
was made that not all elastic scattering matrix
elements are large. Only those for forward
scattering are big; those for back-scattering
are small and suitable for a perturbative treat-
ment.

Fortunately it proves to be easy to solve for
the forward scattering exactly. By making the
standard approximation that ion-core scattering
is confined to spherically symmetric, nonover-
lapping muffin tins about each ionic site, and
that in between muffin tins the electron experi-
ences a uniform potential Vo which includes an
imaginary component to take account of absorp-
tive processes, the wave function between the
kth and (Iz —1)th layers of muffin tins can be
written as a sum over forward and backward
traveling plane waves:

Q-(U„g' exp[iKg' (r —Iza)]+ U„- exp[zX- ~ (r —ka)]),

Kg' = (+ (2E —2VD -K —K )'~', Eo, +g„,Ko, +g,), (4)

where a is the displacement of the kth layer relative to the' (Iz —1)th layer, g is a reciprocal-lattice
vector of the surface, E is the energy of the wave incident ori the surface, and K„and K„are com-
ponents of the wave vector of the incident wave, parallel to the surface; Up' is the amplitude of the
incident wave and Up that of the reflected wave.

In the absence of scattering, the forward-traveling waves between the kth and (k —1)th layers propa-
gate to between the jth and (j —1)th layers unimpeded:

Q-U, &+exp[zK-' (r —ja)]=gggg. .P&g, '(j —I)Uz„-'e p[xiK&' (r- ja)].,

where

P-,'(j -k) = exp[zX-' (j —k)a]5-, ; (6)
P' is called the propagator. When the forward scattering is strong, there are many other contribu-
tions to U,. involving scattering at intermediate layers. A typical contribution might involve propaga-
tion to the kth layer via P'(k —lz), forward scattering there represented by M', further propagation
to the lth layer via P'(I —k) followed by another forward scattering event involving M', and finally
propagation to the jth layer via P'(j —l). All these contributions give

P«, '(j —k) =P'(j —k)+ Q P'(j —k)M'P'(k -k)+ Q P'(j —1)M'P'(1 —k)M'P'(k —k)+ ~ ~ . (7)
h~k&q

By bearing in mind that

P'(j -k) = [P'(l)l' ",

this series can be summed to give

RF S+(j k) = [P+(1)(1+M+)]

PRF s' describes propagation from j to h with all
possible forward scattering processes included.
It will be referred to as the renormalized for-
ward-scattering (RFS) propagator.

h(k&l &j

Now a new perturbation series in back scatter-
ing by layers, represented by I, can be devel-
oped. The back scattering being small relative
to the absorption, there is every reason to be-
lieve that a highly convergent series will result.
For example, to first order, contributions to
the reflected amplitudes U, come from RFS
propagation to the Izth layer, P„~,'(k), back
reflection at the 6th layer, M, followed by

858



VOLUME 27, NUMBER 13 PHYSICAL REVIEW LETTERS 27 SEPTEMBER 1971

renormalized propagation out of the crystal,
PaF, (h). PR„S has a definition analogous to
that of PRF s".

The first-order expression is

+o +hPR F s (@)M PRF s (@)~o

(10)

of the individual layers are known, inct.uding
thirteen beams in the calculation, are 3 sec per
point for third-order RFS perturbation theory
scaling to about 12 sec on an IBM machine be-
cause of the lower single-precision accuracy.
It is hoped that the new RFS perturbation theory
will greatly facilitate the application of LEED
to the analysis of surface structures.

The next order to contribute to U, is third or-
der, only odd numbers of back scattering con-
tributing.

First- and third-order contributions are shown
in Fig. 1(b) and compared with the exact results.
Even first-order theory gives quite accurate re-
sults and after the next contribution has been
added, the result is so accurate that it is al-
most indistinguishable from the original. The
new scheme is also very fast. Times taken,
once the transmission and reflection coefficients
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We report electron microscopy experiments showing that the spatial distribution of
damage produced in metals by implanted ions is generally quite different from that of
the ions themselves. We discuss how this affects hyperfine-interaction measurements.

Ion implantation is a very powerful method for
avoiding metallurgical difficulties in sample prep-
aration. It has been widely used in radioactive
hyperfine-interaction (hfi) measurements —i.e. ,
Mossbauer effect, perturbed angular correla-
tions, and nuclear orientation —for which the to-
tal number of impurity atoms need not be very
large (typically less than 10")." However, size
differences distort the lattice around the impuri-
ty, and radiation damage due to the implantation
process produces defects which behave like im-
purities and interact with implanted ions. It has
long been expected that this affects the final posi-
tion of the foreign atoms and the stability of the
alloys formed by this method. Recent experi-
ments" have shown that this is indeed the case
in many instances, where part of the radioactive

nuclei cannot be accounted for in nuclear orienta-
tion and integral-angular-correlation experi-
ments, the oscillation amplitude is considerably
reduced in differential angular correlations, or
different sites appear in Mossbauer spectra.

It is often stated' that the impurity ion comes to
rest in a vacancy-rich area from which most in-
terstitial host atoms created by previous prima-
ries have been projected forward at a rather
large distance. Since these interstitials are very
mobile at room temperature in most metals, and
because large impurities tend to occupy lattice
sites by replacement collisions, substitutional
sites are favored for these impurities. More-
over, in this particular case, the elastic strain
of the lattice may be reduced by the attraction of
a vacancy to the foreign atom; the important


