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It is a trivial matter to extend the formalism
to a nucleus of charge Z and an atom of Z elec-
trons. However, one can show then that the low-
est-order interaction term represents the com-
plete ionization of the atom into Z electrons and

a nucleus, and is suitable only if ionization in un-

likely. Consequently, it is necessary to intro-
duce the state of the ions with charges Z —1, Z
—2 ~ ~ ~ Z. This is readily accomplished by
modifying Eq. (5). Now Is becomes the projec-
tion operator onto the states of the Z-electron
atom. The product of the identities IPf +2, M
+2') ~ ~ ~ I(N, N') itself is decomposed according to
Eq. (5): Is ~ ~ I~I. ~ ~ I, where Is and I~ now pro-
ject onto states of the ion with charge Z —i. The
product I ~ ~ I in the above is again decomposed
according to (5) where now the projection opera-
tor is that for the states of the ion with the charge
Z —2. One continues this process until the nucle-
us of charge Z and electrons are left or when the

rare-gas core is reached. The physical states
will now contain at most one quantum of each of
the unbound composites and the Hamiltonian will
contain terms corresponding to single ionization,
double ionization, etc., of the atom and of the
ions. Extension to molecular aggregates and to
negative ions is trivial.
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New boundary conditions on the Einstein-Rosen-Bondi gravitational-wave metrics
yield closed inhomogeneous universes which solve Einstein's vacuum field equations
exactly. Space sections of these universes have either the three-sphere topology S or
the wormhole (hypertorus) topology S SS .

By means of a change of boundary conditions,
the Einstein-Rosen-Bondi analysis of cylindrical
and plane waves' may be used to construct gravi-
tational waves in closed universes. Spacelike
sections of these universes have either the three-
sphere topology S' which is familiar from the
Friedman universe or the hypertorus topology
S'$ which may be imposed upon the Kantowski-
Sachs universe. ' Exact solutions to Einstein's
field equations are obtained in the absence of
matter and nongravitational fields. These solu-
tions provide a new type of cosmological. model
which is dominated by homogeneity-breaking,
coherent gravitational radiation. ' They also
provide an important new "theoretical laboratory"
for testing and exploring recent formal develop-
ments in general relativity. 4

An Einstein-Rosen-Bondi space-time will be
defined to be one which possesses two mutually
orthogonal, hypersurface orthogonal, spacelike
Killing vector fields. It is well known that any

such space-time has a metric which may be put.
into the form

ds'=I, [e"(dei-dt )

+R(& 'e'~do'+Be '~ds') I, (1)

where I. is a constant length; t, 8, o, and 5 are
dimensionless coordinates; and a, 8', R, and B
are dimensionless functions of 8 and t alone. '
This form of the metric does not fix the coordin-
ates 8 and t completely. In terms of the advanced
and retarded coordinates v= t+ 8 and u=- t —I9,

the most general coordinate transformations
which preserve the form of the metric are

u=I'(u), v=G(V),

where I and G are arbitrary functions of one
variable. ' In order to write Einstein's equations
for this family of space-times, it is convenient
to denote derivatives Lith respect to v and u by
the subscripts + and —,respectively, and to
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define the function

0 -=W--,' InB. (3)

a and integrated directly. However, along the
diagonal v =w, one has R, =0 and Eq. (4) becomes

The independent Einstein field equations are then'

R,a, =R4, 2+ R —— R(R-, /R),
R a =Rp +2R —gR(R /R)2,

(e/a 8)(Ref/a 8) —(ejat)(Ray/at) = 0,

a'R/e 8'- e*R/aP = 0.

(4)

(5)

(5)

(7)

Equation (7) is the key to constructing closed
universes. The general solution to this one-di-
mensional wave equation is R =J(u)+K(v), where
J and K are adjustable functions. The allowed
coordinate transformations given by Eq. (2) can
bring R into the form R= J(F(u))+K(G(v)). Thus,
for a given space-time, the functional form of
R(u, v) is highly dependent on the choice of co-
ordinates. However, the allowed transformations
cannot alter the light cones of a space-time.
Thus, allowed coordinate transformations cannot
alter the spacelike, lightlike, or timelike char-
acter of the gradient R which is therefore an
invariant feature of the spacetime. ' More im-
portant for the purpose of constructing solutions
with a particular global topology is the fact that
allowed coordinate transformations cannot alter
the topology .of the level surfaces of R and the
way in which these surfaces are constructed from
spacelike, timelike, and Iightlike segments. In
particular, the solution

8 = sin ~ sint

is distinct jn its global structure from the solu-
tions R = 8 and 8 =t; which lead to the usual Ein-
stein-Rosen cylindrical waves, and also from
the solution R =u', which leads to the Bondi plane-
wave metric's.

A space-time described by Eq. (8) can be regu-
lar only on a coordinate patch which is bounded
by initial and final "collapse" singularities at
t=0 and t=n and by apparent singularities at 8=0
and 8=v. Within this square in the (8, t) plane
all three classes of wave metrics (R spacelike,
lightlike, and timelike) are present and join one
another at the Iightlike surfaces u = 0 and v = n,
which form the diagonals of the square. Away
from these diagonals, R, and R are nonzero

g, (u, v) = +[2 cos(u/2)] ',

and along the diagonal u =0, one has R =0 and
Eq. (5) becomes

ep/e8=0 and eg/at= + I,
or

ag/a 8=+ 1 and ag/at = 0.

Each possible pair of constraints yields a distinct
family of solutions although some families may
be related by time reversal and parity.

From Eqs. (1) and (3) it is clear that W and B
are redundant functions. One is free to require
~ to be one of the regular solutions

W = Q, [A,P, (cost) + C,Q, (cost)]P, (cos 8) (13)

to the wave equation (6) where P& and Q& are
Legendre functions of the first and second kind
and A, and C, are adjustable constant coefficients.
The function Ina wjll then be an irregular solu-
tion with logarithmic singularities at 8= 0 and
8=m. The additional requirement that Eq. (1)
describe a closed universe implies further that
8 should be proportional to either 8 or 8 ' near
8=0 and to either n —8or (v —8) ' near 8=v.
Two solutions for B which satisfy these require-
ments are

and

B = sin8sint

B = tan(8/2).

(14)

(15)

g (0, v) = +[2 sin(v/2)] '.

When Eq (6.) is written in terms of u and v and
evaluated along the diagonals, one finds that it
reduces to first-order ordinary differential equa-
tions for the normal derivatives of g and that
Eqs. (9) and (10) are solutions. Thus, the con-
straints (9) and (10) are propagated in time by
Einstein's equations, and it is sufficient to im-
pose them at just one time. It is convenient to
impose them at t = v/2, the time when the diagon-
als cross at 8= w/2. At t = 8 =v/2, one requires
that either

so that Eqs. (4) and (5) may be solved for a, and
i

If Eq (14) is ad.opted as the solution for B,
then the space-time metric becomes

sd'=L' ins't[ e&I(d8'-dt*)+e ' sin'8de']+I'e'"d&r,
where y is related to the funCtion a by

y= a+ 8' —In sint.
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(19)

This metric describes a closed universe with space sections of topology S'S S' provided that e and 5

are regarded as angle coordinates with period 2m. The metric is regular except for initial and final
singularities at t =0 and t =m and possible conical singularities at 8=0 and 8=m. To avoid conicality,
it is sufficient to require y=sy/BH=O at 8=0 and 8=v. From the Einstein equations (4) and (5), one
finds that By/BH=O and By/Bt=cott whenever 8=0 or H=v .Thus, conicality can be avoided by requir-
ing only y(0, t) = y(w, t) =ln sink; and furthermore, these conditions need only be imposed at a single
time t. Equations (4) and (5) may be integrated whenever Eq. (6) is satisfied. The unique solution for
y which incorporates regularity at 6)=0 is

e
y=ln sint +f dysiny&2sint[W, ~/sin(t+y)+ W ~/sin(t-y)] —cosy(sin~t —sin~y} '&.

It is convenient to impose the remaining regularity condition, y(v, t) = 0, at t = v/2. The result is the
quadratic integral constraint,

f dH tanH[(BW/Bt)'+(BW/BH)' l]i,-„i,=0,

which may be regarded as a single quadratic equation restricting the infinite set of soefficients A, and
C, which appear in the solution [Eq. (13)] for W. These coefficients are also restricted by two linear
equations arising from Eqs. (11) and (12). For the present choice of B, these constraints are either

or

B W/B Hi e, ,i~
= 0 and B W/8 t i e, „I= + 1,

BW/BHle=, =. , =+ 1 and BW/Btle=, =...=0

(20)

(21)

Notice that these linear constraints guarantee that Eqs. (9) and (10) are satisfied which, in turn, guaran-
tee that the poles in the integrands of Eqs. (18) and (19) vanish so that the integrals will always exist.

Equations (20) and (21) correspond to two distinct families of "wormhole universes". The arbitrary
signs in the equations merely correspond to the possibility of tine-reversed and parity-reQected solu-
tions. To obtain a particular solution, one finds coefficients A, and C, which satisfy the appropriate
pair of linear algebraic equations as well as the quadratic equation (19), and then performs the integral
in Eq. (18) to find y. For example, if Eq. (20) is chosen, then there is a homogeneous wormhole uni-
verse which is obtained by letting Cp + 1 be the only nonvanishing coefficient. The result is a form of
the Kmtowski-Sachs metric. ~ If Eq. (21) is chosen, then time-symmetric solutions are possible, and
the simplest one is C, =+ 1 with all other coefficients zero. This family of solutions includes the time-
symmetric wormhole universes discussed by Lindquist. '

Now consider the consequences of adopting Eq. (15) for 8 The re.sulting space-time metrics are

ds~ =-,'L~ sint[e' &(d 8' -dt~)+4e~~cos~(8/2)de +4e ~~ sin'(8/2)d5'], (22)

where Eq. (17) has been replaced by

y -=a-
& In(& sint).

The spacelike part of this metric is a distortion of the three-sphere metric

(23)

dp =d8'+4 cos*(8/2)da +4 sin'(8/2)d5I,

where 8, 2(@+5), and 2(e- 5) are the Euler angle coordinates. ' The coordinates e and 5 are angles
with period 2v just as in the S'I3 S' case. Regularity at 8 = 0 and 8 =m requires that y(0, t) = - W(0, t)
and y(e, t) = W (e, f). The integral for y is found to be

sin8 siruc sinmt —sin y
(24)

where

g, = W, +(4siny) ', CV=-t-y, 6-=t+y,

and the function W is given by Eq. (13) as before, but with the coefficients A, and C, restricted by
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the quadratic equation

'de aw ~ aw», aw 1sine +
i

——,
' — = W(e, —,'n)+ W(0, —,m)

~ cose,iat aey ' ae
(25)

at t =m/2, and by one of the following three pairs
of Iinear constraints:

aw/at=o, aw/ae=-, ';
aw/at=o, aw/ac= ——,';
a W/at = + I, a W/a e =

~

(25)

(27)

(2s)

at e=t=w/2. Each pair of linear constraints
leads to a distinct family of three-sphere uni-
verses. UnIike the wormhole universes, these
empty, inhomogeneous generalizations of the
Friedman universe do not seem to include any
familiar solutions. In particular they do not in-
clude the Taub universe.

By repIacing the globa11y regular coordinates
Hand t by B=sin6jsint and T=cos&cost, one
discovers that the metrics discussed here may
be written in the form

de~ —e(&-w)(dR -dT )+ edmz+R e ~dp (29)

for R a spacelike coordinate and in the form

ds'=e~ ")(dT'-dR')+e~dz'+R'e "dp' (30)

where R is timelike. The function ze is related
to 8' and B whiIe F is related to a or y. The co-
ordinates z and y are identified with 0 and 5,
but the exact nature of the identification (e.g. ,
z=&r, z=a, z=-o, etc. ) may differ from one
(R, T) coordinate patch to another. Within the
(e, t) square there are four separate patches with-
in which the Einstein-Rosen coordinates 8 and T
are regular. Equation (29) describes the metric
in the patches (u & 0, v (e) and (u (0, v & w) while
Eq. (30) is appropriate in the patches (u (0, v (m)
and (u &0, v & w). These metrics appear singular
(tv has infinite derivatives) along the surfaces
u =0 and v =n where they meet. Thus, with the
proper matching conditions [(essentially Eqs.
(19)-(21) or (25)-(28)] four Einstein-Rosen cylin-

I

drical-wave metrics can be joined to produce a
space-regular closed universe which evolves
from a singular "big bang" to a final collapse.
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