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sistent with the curve for 8, "=0 which would be
indicative of compound-nucleus formation. The
errors are estimated to be less that e 6' in all
cases, and in Fig. 3 this is approximately half
the difference between the pickup and the ~,"=0
curves. These results are strongly supported by
evidence that this reaction changes from com-
pound-nucleus formation to a direct-interaction
mechanism at about 0.7 MeV.4' This indication
of a means of reaction-mechanism identification
is being extended to other reactions, especially
those with previous evidence of other direct-in-
teraction mechanisms.
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FIG. 3. Same as Fig. 2 but for E&=0.4 MeV.

the above-mentioned symmetry axis 8,", and
these values of 8, are shown as circles in Fig. 2.
The solid curves in this figure, from top to bot-
tom, represent the following directions relative
to the beam direction'. (1) plane-wave heavy-
particle stripping; (2) sBe, ,(2') recoil direction,
c.m. (1); (3) 82" =0 (defined in same manner as
8," above); (4) 'Be»(2') recoil direction, lab;
and (5) plane-wave pickup. It is very apparent
from Fig. 2 that there is a systematic trend, and
that the data agree very well with the curve for
plane-wave deuteron pickup, for E„=1..5 MeV.
The same agreement occurs at E, =1.0 MeV.
For E„=0.4 MeV, as shown in Fig. 3, the points
obviously do not fit the pickup curve, but are con-
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Composite Particles in Many-Body Systems
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Presented herein is a second~uantized formulation for a system of interacting nuclei
and electrons expressed in terms of the creation and annihilation operators of various
species of atoms and ions which can be formed by combining various numbers of the "el-
ementary" particles. Processes such as ionization and recombination appear naturally.
Explicit expressions for interatomic forces including exchange effects are generated from
a "cluster expansion" reminiscent of the Ursell expansion.

The formulation of the many-body problem of
a system of interacting atoms taking into account
the composite nature of these particles was ac-

complished by the work of Girardeau. ' There
are, however, two disadvantages to his method:
First, both the bound and continuum states of the
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atom are depicted as particles, which precludes
the explicit appearance of the ionization and re-
combination terms in the Hamiltonian; and sec-
ond, rather stringent conditions are imposed
upon the state in order that the symmetry prop-
erties of the "elementary" particles under inter-
change are preserved. The problem has been
elegantly resolved by Stolt and Brittin' by prov-
ing the existence of partial isometrics between
the physically permissible states and a subspace
of the complete Hilbert space spanned by prod-
ucts of bound- and free-particle wave functions.
The second problem was also resolved in a later
paper by Girardeau, ' wherein subsidiary condi-
tions were incorporated into the Hamiltonian.
The particle-nonconserving terms are still miss-
ing, but exchange terms now appear directly in
the Hamiltonian. In the present work neither
problem appears, but some physical states may
have one unbound pair of each type of composite
particle. Although these pairs do not present
serious mathematical problems, their physical
significance is obscure. The present method
permits one to directly carry the theory beyond
the results achieved by Stolt and Brittin.

Avoiding unnecessary complications, a system
of N electrons and N nuclei of spin J is consid-
ered. The atom here is the "hydrogen" atom.
The complete wave function obeys the usual sym-
metry property under the interchange of any pair
of nuclear coordinates x„~ ~ ., x„and of the elec-
tronic coordinates y„~ ~ ~, y„, but a basis of prod-
ucts of bound atomic wave functions (or of atomic
wave functions and free-particle wave functions)
does not have appropriate symmetry. ' Girardeau
observed that it was advantageous to let the Ham-

where

(«ylx'y')=&(«x ')" &(y» y»') (2)

and where the underscoring denotes the complete
set of 2N coordinate vectors and 2N spin vari-
ables. The permutation P is the product (permu-
tation of the N electron coordinates) times (per-
mutation of the N nuclear coordinates). The sign
factor is the product (signature of the electronic
permutation) times [signature of the nuclear per-
mutation (one) if J is odd (even)]. The projected
Hamiltonian is given by

iltonian bear the full burden of symmetry and let
it operate in the space spanned by the atomic ba-
sis. He called this the projected Hamiltonian,
the eigenstates of which are necessarily the ei-
genstates of the full Hamiltonian but belong to
the subspace with appropriate symmetry. This
Letter is an extension of Girardeau's work in
two senses: First, a basis composed of bound
atoms, free ions, and free electrons rather than
bound and continuum atoms will be employed to
construct the projected Hamiltonian; and second,
a systematic procedure for generating higher-
order terms in the projected Hamiltonian based
upon a variant of the Ursell expansion is given.
Qne does not completely escape the unbound atom
here. A physical state will be seen to contain
one (or zero) unbound atoms, because of the need
for orthogonality of the basis states.

Consider the projection operator A which pro-
jects from the full Hilbert space onto the physi-
cal space of appropriate symmetry. Its matrix
element is

( y R I«'y') =(N(N') 'Z»(~)& y IP«'y'&,

(xy I III «'y')
= f &«~I& I rs) (rs I III r's') (r's'IA lx'y ') drdsdr'ds',

where the integral sign denotes integration over coordinates and summation over spins. A second A
is unnecessary, but for convenience it will be retained.

We introduce now the basis for the subspace of M bound atoms, one unbound atom, N-M —1 ions,
and N -M —1 electrons. Qnly the subspace of N bound atoms does not contain an unbound atom, and
the number N -M —1 is then to be interpreted as zero. Let

IMxy) = [M ~(N-M —1) &(N-M —1)~] 'Z~(+)f Ix'y') («'y'l&»l»y&dx'dy', (4)

where the projection operator L„ is defined as

(xy IE»l x'y ') =Is(1, 1'). ~ Is(M, M')I»(M +1,M +1')I(M +2, M + 2') ~ ~ ~ I(N, N'),
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bound
I (1, 1') =- g y„(x„y,)cp„(x,', y, ')*, (6)

unbound
It(l, 1') = 2 Va(x||y|)V'a(xx yiz }

Iz(1, 1')+I+(1,1') =I(1, 1') =5(x„x,')6(y„y, '),

in which y„are atomic wave functions. The orthogonality and completeness relations are

f(xy I& lx'y'&b'y'l&z'lx "y "&«'dy'= &» by l&&lx "y "&

(8)

Z & yl&zlx'y'&=bylx'y'&. (10)

The permutation P is the product (permutation of the couples x,y„~ ~ ~, x„y„) times (permutation of
the nuclear coordinates x„,„~ ~ ~, x„) times (permutation of the electron coordinates y „,„~~ ~, y „).
The overall sign is the product [signature of the first permutation (one) if 24+1 is odd (even)] times
[signature of the second permutation (one) if 2J is odd (even)] times (signature of the third permuta
tion}.

These states are orthogonal in the sense that

Ofxy IM x y &=6» [Mt(N-M -1)!(N-M —1)!]'Z~(~) byl~. l px'y'&.

%e define the operator A by

A = 2 J IMxy & Wy I A I x'y '& A'x'y '
I dx'dy '«dy,

which has the matrix element

(xy IA lx'y'& = (xy IA lx'y'&,

and the property

(A} =A,

so that it is our desired projection operator. The projected Hamiltonian H is given by

II=AHA = 5 f IMxy&& ylAHAlx'y'&(M'x'y'Idx&ydx dy

(13)

(14)

(15)

If we use a second quantized form of IMx~&, then

IMxy&=[M!(N-M-1)!(N-M —1)!]'"
x4 (z,) ~ ~ ~ 4 (z„)4 (w)4 (x„,,)4 (y„, 2) ~ ~ ~ 4 (xz)4 (yz)IQ&,

where 4 t(x} and 4t(y) are the usual ion and electron wave function creation operators, and

un bou nd
(w) Z act pit (xJI +Isyz + 1)l

(16)

bound
4 (z,) = Q an p *(x„y,}i (18)

which are fermion (boson) operators if 2J+1 is odd (even). The a obey the usual anticommutation
(commutation) rules. In order to avoid sign ambiguities, the normal commutation rules are being
used: Boson operators commute with other boson and fermion operators, and fermion operators anti-
commute with other fermion operators. Upon using the usual second-quantized form for H and A,

(xy I Clx'y'&= [N!] '(0I 4'(y, ) ~ ~ ~ 4(y, )4(x„)~ ~ ~ 4(x,)H4t(x, ') ~ ~ ~ 4t(x„')4 t(y, ') ~ ~ ~ 4 t(y„') IQ&,

(xylAlxy &=[N!] '(Ql@(y„)~ ~ ~ 4(y, )4'(xp) ~ ~ ~ 4'(x, )4' (x, ') ~ ~ 4 (x„')4 (y, '). ~ ~ 4' (y„')IQ&,

(19)

(2o)
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and inserting into Eqs. (12) and (15), and using the Ursell expansion, one obtains the following expres-
sion:

H=Q: Q H(RSTU; R'S'T'U'}
m 8STU

SITIU

with the restrictions

[A(rstu r's't'u')] "~"
m(rstu; r's't'u') I

r 's't 's'
(21)

Q(r' —r+s'-s+t -t')m(rstu; r's't'u')+(R' —R+S'- S+T —T') =0,

Q(r' —r+s' —s+u —u')m(rstu; r's't'u') +(R' —R+S' —S+U- U') =0,

Qsm(rstu; r's't'u') +S (1, Qs'm(rstu; r's't'u')+S'(1.

x4(zU") ~ ~ ~ 4(y, '}4(xr.') ~ ~ ~ 4(xi')4(w'}4(zs") ~ ~ ~ 4(z, ')dz, dz, ' ~ dycdyc. ' (22}

with corresponding expressions for A(rstu; r's't'u'). The operators A(1000; 1000), A(0100; 0100); A(0010;
0010), and A(0001; 0001) do not appear in Eg. (21). The integers m(rstu; r's't'u') are the number of
times the corresponding operator appears as a factor. The sum is over all possible sets of the m's.
The enclosure by colons denotes normal products. The subscripts C denote "connected" and are de-
fined by the Ursell expansion of which an example is

&ol 4(y)4(x)H4'(x )4'(y ) lo& = (1IIIl Il I) '"(&yx I Hl x y &, +&y IHly'&c&x I «'&c+ &y ly'&c&x tHt «'&c }

=(1Il I1I) ' '&z tHt«'y')c=(l Il I) ' '&zlHlz'& (23)

The cluster term involving R bound-atom creation operators, S (zero or one} unbound-atom creation
operators, ~ ~ ~, U' electron destruction operators is given by

H(RSTU;R'S'T'U') =(RISITIUIR'IS'!T'IU'I) 'f 4'(z, ) ~ ~ ~ 0't(z„)4 t(w)4t(x, )~ ~ ~ 4 t(x )

x4'(y )" 4'(yU)&yv" 31«r" «iwzs " ilHlz. ""zs ' 'xi""xr'yi""yv"&c

&014(x)4'(x') lo&=(1II I) '"& lx &,. (24}

Note that a given matrix element defines several connected matrix elements as in (23). The first line
of (23} corresponds to the transition from an ion-electron state to another ion-electron state. The sec-
ond line describes the transition from an ion-electron state to a bound-atom state, and the third line
to a transition from a bound-atom state to another bound-atom state. The normalization factors are
written in particularly awkward fashion to show the general rule: a factor of (n I} '" for n operators
(creation or annihilation) of any particle. Note the sequence of operators and the arguments of the con-
nection matrix elements which must be followed if there is to be no sign error.

Restricting ourselves to terms which do not create or destroy more than two particles, the Hamil-
tonian becomes the sum Ho+H„+ B,+HJ„where Ho is the usual electron-nuclei Hamiltonian, and H„ is
the atomic Hamiltonian of Girardeau' including both direct and exchange interactions, but the atomic
operators are restricted to bound-state operators only.

H, = f 4'( z)[ H4( y) 4(x)]dz +H. c + f4't(z, )4't(x, )V(z„x,)4'(x,)4(z,)dx dz,

+f '4( z)4'(y. )I'(z„y.)4(y,)4(z,)dz, dy.

+ f4 (z,)4 (x,)z[-1+(-1)' l(x, «,)][H4(x,)4(zi)]dzidx,

+ f4 (z,)4 (y2)z[- 1 —I(y„y2)][H4'(y2)4(z, )]dz, dym, (25)
where V(z„x,} and V(z„y,) are the Coulomb in-
teractions between the atom and the ion and be-
tween the atom and the electron, respectively,
and H is the total unsymmetrized Hamiltonian for
the variables concerned. I(x„x,) and I(y„y,) are
the exchange operators for the nuclear and elec-
tronic coordinates, respectively. The first line
describes ionization and recombination process-

t es. The remainder describes electron-atom or
ion-atom collisions including exchange collisions.
H~ is similar to H„=Hi except for the presence
of 4(u) and 4 (w). Explicit expressions will be
given elsewhere. It follows from Egs. (4) and
(10) that the physical state can contain one un-
bound atom at most.
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It is a trivial matter to extend the formalism
to a nucleus of charge Z and an atom of Z elec-
trons. However, one can show then that the low-
est-order interaction term represents the com-
plete ionization of the atom into Z electrons and

a nucleus, and is suitable only if ionization in un-

likely. Consequently, it is necessary to intro-
duce the state of the ions with charges Z —1, Z
—2 ~ ~ ~ Z. This is readily accomplished by
modifying Eq. (5). Now Is becomes the projec-
tion operator onto the states of the Z-electron
atom. The product of the identities IPf +2, M
+2') ~ ~ ~ I(N, N') itself is decomposed according to
Eq. (5): Is ~ ~ I~I. ~ ~ I, where Is and I~ now pro-
ject onto states of the ion with charge Z —i. The
product I ~ ~ I in the above is again decomposed
according to (5) where now the projection opera-
tor is that for the states of the ion with the charge
Z —2. One continues this process until the nucle-
us of charge Z and electrons are left or when the

rare-gas core is reached. The physical states
will now contain at most one quantum of each of
the unbound composites and the Hamiltonian will
contain terms corresponding to single ionization,
double ionization, etc., of the atom and of the
ions. Extension to molecular aggregates and to
negative ions is trivial.

It is indeed a pleasure to thank my friend and
mentor Professor Wesley E. Brittin for numer-
ous discussions and for criticizing the manu-
script. I am grateful to Mrs. Royer of the Uni-
versity of Colorado physics department for typ-
ing the manuscript.

'M. Girardeau, J. Math. Phys. 4, 1096 {1963).
R. H. Stolt and W. E. Brittin, Phys. Rev. Lett. 27,

616 (1971).
3M. Girardeau, "Formulation of the Many-Body Prob-

lem for Composite Particles. III: The Projected Hamil-
tonian" (to be published).

Gravitational Waves in Closed Universes
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New boundary conditions on the Einstein-Rosen-Bondi gravitational-wave metrics
yield closed inhomogeneous universes which solve Einstein's vacuum field equations
exactly. Space sections of these universes have either the three-sphere topology S or
the wormhole (hypertorus) topology S SS .

By means of a change of boundary conditions,
the Einstein-Rosen-Bondi analysis of cylindrical
and plane waves' may be used to construct gravi-
tational waves in closed universes. Spacelike
sections of these universes have either the three-
sphere topology S' which is familiar from the
Friedman universe or the hypertorus topology
S'$ which may be imposed upon the Kantowski-
Sachs universe. ' Exact solutions to Einstein's
field equations are obtained in the absence of
matter and nongravitational fields. These solu-
tions provide a new type of cosmological. model
which is dominated by homogeneity-breaking,
coherent gravitational radiation. ' They also
provide an important new "theoretical laboratory"
for testing and exploring recent formal develop-
ments in general relativity. 4

An Einstein-Rosen-Bondi space-time will be
defined to be one which possesses two mutually
orthogonal, hypersurface orthogonal, spacelike
Killing vector fields. It is well known that any

such space-time has a metric which may be put.
into the form

ds'=I, [e"(dei-dt )

+R(& 'e'~do'+Be '~ds') I, (1)

where I. is a constant length; t, 8, o, and 5 are
dimensionless coordinates; and a, 8', R, and B
are dimensionless functions of 8 and t alone. '
This form of the metric does not fix the coordin-
ates 8 and t completely. In terms of the advanced
and retarded coordinates v= t+ 8 and u=- t —I9,

the most general coordinate transformations
which preserve the form of the metric are

u=I'(u), v=G(V),

where I and G are arbitrary functions of one
variable. ' In order to write Einstein's equations
for this family of space-times, it is convenient
to denote derivatives Lith respect to v and u by
the subscripts + and —,respectively, and to
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