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In a recent Letter on the hyperfine shifts in HeH the conclusion was reached that the
hyperfine shift is never negative, even at the largest separations. This conclusion,
which is in disagreement with fundamental ideas regarding the role of the van der Waals
interaction in hyperfine pressure shifts, is traced to an uncritical use of Brillouin’s
theorem. Upon making the necessary corrections, we obtain a long-range negative shift

of proper magnitude.

Optical pumping methods have provided accu-
rate measurements of the hyperfine pressure
shift’ (HPS) and its temperature dependence?
for paramagnetic atoms in various buffer gases.
The theoretical analysis of such data has been
one of the most illuminating developments in the
theory of interacting atoms in the past few de-
cades since it involves fine details of their wave
functions and thus offers a strong complement to
the study of intermolecular forces which require
only a knowledge of energies. One of the impor-
tant problems in the field of HPS is that of the
hydrogen atom in rare-gas buffers since here
the HPS shows a strong variation from positive
in H-He to large and negative in H-Xe.

Adrian® offered an explanation for this trend in
terms of a competition between a positive contri-
bution due to Pauli distortion at short range and
a negative one at long range due to van der Waals
(vdW) polarization. Quantitative theoretical cal-
culations have been carried out* ® showing the
correctness of Adrian’s ideas, the negative vdW
effect dominating for the larger and more polar-
izable atoms. One of the limitations of these cal-
culations was the necessity of choosing a cutoff
for the vdW contribution at short range due to
its diverging nature, for example, D/R® from the
dipole-dipole effect.

In a recent Letter by Das and Ray,” hereafter

referred to as I, the authors attempted to obviate
the need for choosing a cutoff. Instead they ob-
tained the fractional shift

SR) = Av(R) /vy = [pg(R) = py(*0) ]/ py()

by utilizing a molecular-orbital approach with
configuration interaction (MO-CI) to allow for
van der Waals polarization. Their results and
their interpretation, if correct, would place the
theoretical understanding of this field in a quan-
dary. They find that for the H-He system the
positive contribution due to the Pauli distortion
and the one-electron potential distortion (due to
the potential terms in the interatomic electronic
Hamiltonian) swamp the negative vdW contribu-
tion, even at long range. This conclusion leaves
without explanation the large negative HPS in H-
Ar, H-Kr, and H-Xe. Fundamentally and intu-
itively, one would think that the vdW effect would
dominate at long range since it does not require
the wave functions to overlap, which is a neces-
sity for the Pauli and potential distortions.

The main aim of the present paper is to show
that the results in I for f(R) are in serious error
at long range because of the neglect of single ex-
citations in the MO-CI function. Using cross-
perturbation theory, we indicate how one can
quantitatively evaluate the effect of the single ex-
citations using the MO-CI function in I and show
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that such a procedure does indeed lead at long
range to the same negative results as have been
obtained® by many-body perturbation theory for
separated atoms. In addition, this process for
extracting f(R) from MO-CI functions allows one
to obtain the vdW contribution to the fractional
shift for all R, eliminating the need for choosing
a cutoff in the averaging procedure.

Briefly, what is missing in the calculation in I
is the incorporation of singly excited configura-
tions in the MO-CI wave function. Those singly
excited configurations which involve excited MO
with primarily hydrogen-atom s character are
crucial to obtaining the correct f(R) at long range,
as will be shown. Physically, the existence and
role of these configurations are best illustrated
by the two alternate types of diagrams shown in
Figs. 1(a) and 1(b).

In Fig. 1(a) ¥(0HKs) represents a singly excited
configuration where the unpaired hydrogen 1s-
like orbital is replaced by a higher s-like orbital.
¥(oHKp, oHeKp) represents a doubly excited con-
figuration where the hydrogen 1s-like and helium
1s-like orbitals are simultaneously excited to
higher p-like states as a result of the vdW inter-
action. JCy¢, is the hyperfine structure operator;
the form of ¥C, 4w will be commented on later. By
way of explanation of Figs. 1(a) and 1(b), it is
necessary to recall that at long range the lowest
order®* of perturbation theory giving rise to the
HPS is second order in 3C,4wand first order in
JChis. The important point is that through two or-
ders in ¥, 4y, it is possible to obtain a mixing be-
tween ¥, [the first term in Eq. (2) of I] and singly
excited configurations as seen from both Figs.
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FIG. 1. vdW contribution to f (R)ygqw: (a) pathway and
(b) diagrammatic representation. In (a) solid lines
stand for vdW interaction and dotted ones for hyperfine
interaction. oHls and oHels refer to ground-state mo-
lecular orbitals with predominant Hls and Hels char-
acter, respectively. ocHKs, ocHKp, and cHeKp are cor-
responding excited states. Although not shown, excited
T states, THKp and "HeKp, can also occur in double ex-
citations. In (b), the two dashed lines refer to the vdW
interaction, while the vertex at the top refers to the
hyperfine operator 3Cyg,.
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1(a) and 1(b).

Das and Ray invoked Brillouin’s theorem® as a
reason for excluding singly excited configurations
in their calculations for the total ¥ for the two
interacting atoms. Brillouin’s theorem states
that starting with ¥,, the first-order changes
represented by the singly excited configurations
are zero when ¥, has been determined by energy
minimization through the Hartree- Fock proce-
dure. However, when one adds two-particle ex-
citations ¥(oHKp, oHeKp), to ¥, and attempts to
obtain the net ¥ by energy minimization, singly
excited configurations can and should be added
without violating Brillouin theorem. This is al-
ready clear from the diagram in Fig. 1(b) but can
also be illustrated from a consideration of the
secular equation used for solving ¥ variationally.
Figure 1(a) is particularly useful in looking at
the problem this way. Consider the wave func-
tion

=¥, +AY, (1)
where

AY = AT, + AY,,

AY,=27.c,¥(d),

AY,= 25 ¢,;;%(4,7), (2)

i>j

with ¥(7) and ¥(i, j) representing single and dou-
ble excitations, respectively. According to Brill-
ouin’s theorem, (¥, 3| ¥(7)) vanishes (3 being
the Hamiltonian of the system); and hence in the
absence of AY,, the parameters c; are zero for
all i, However, once AY, is included, one can
have finite off-diagonal matrix elements between
AY, and AY, (see Fig. 2) so that when one solves
the requisite secular equation for c¢; and c;;, the
c; come out finite. Thus, while the direct mixing
between ¥, and AY¥, is zero, ¥, mixes indirectly
with A¥, via A¥,. The same idea is conveyed in

Yo NG INES
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FIG. 2. Illustration of secular-equation matrix ele-
ments. Here X represents a finite contribution and 0
a vanishing one.



VOLUME 27, NUMBER 2

PHYSICAL REVIEW LETTERS

12 Jury 1971

the pathway diagram in Fig. 1(a) showing the in-
direct connection of ¥, and A¥, through two or-
ders in the correlation part of 3¢. The part of
this correlation potential which is of interest for
interatomic interactions at long range is re-
ferred to as ¥C,4gy Once such singly excited con-
figurations are introduced into ¥, an alternate
pathway is allowed for contributions to the HPS
as shown in Fig. 1(a) and denoted by (1—-2—3).

This effect is missing in I, since singly excited
configurations were not included in the variation-
al wave function. The only pathway that was in-
cluded in I corresponds to (1—~4) in Fig. 1(a).
Having diagnosed the source of error in I we
now present the procedure for calculating the
neglected contribution to f(R) using the presently
available wave function of Das and Ray. In per-
turbation language, the vdW contribution for the
single-excitation mechanism is given by

AR vaw= 222“’ 15y qwl ) (¥ 15, gl U)W g 1B 1) o

(E,-E,)E,-E,)

where ¥, represents doubly excited configuration

and ¥, singly excited ones due to the one-elec-
tron nature of the operator ¥Cys,. As is usual in
cross-perturbation theory, f(R),qwcan be writ-
ten® in two alternate forms:

f(R)vdW=2<A‘I’1[5Chst\I’o> (4)
or
SAAR) yaw= 2(AY, 13C, qwl AV k), (5)
where
_ [ Y 13Cy aw | W, X, |3Cvaw|‘1’o>
IM")‘Z,.)E (E, dg )(E -E,)
o Y 13, I‘Po}
'A\I’2>—E E —E dw
and

W ¥, 13 | )
| AW s>= _.zzz__m__s_o_
. 2") EO_Em

The two forms in Egs. (4) and (5) are equivalent.
However, using (4) would require a new MO-CI
calculation including single excitations, while
the form in Eq. (5), on the other hand, makes
possible the evaluation of f(R),4w using only the
presently available MO-CI wave functions and a
knowledge of 3Cs,. Before proceeding, we would
like to comment on an apparent paradox in I,
namely, that while the vdW energy had the cor-
rect form' for large R, f(R) did not. This para-
dox can be explained by examining the lowest-
order perturbation expression for the vdW ener-
gy, namely,

Z;<\I’ lﬁcvdwg i(;jl’ I:K‘vdWI‘Ilo> (6)

where the ¥, refer only to doubly excited config-
urations. Since these latter were included prop-
erly in I, this explains why good agreement was
found for E 4w with earlier results. The singly

excited configurations can influence vdW energy
only in higher orders.

The procedure we have used for calculating the
missing vdW contribution f{R), 4w utilized Eq. (5).
In this equation, A¥, is the MO-CI wave function
found in Eq. (2) of I. The many-electron per-
turbed function AV, is well approximated ex-
cept for the smallest internuclear distances (R
<3a,) by replacing the hydrogen 1s-like MO
(0H1s) in ¥, by the moment-perturbed function,

F ag1s. The weight factor e "V®/*T i the statisti-
cal averaging® makes the contribution to the HPS

from R <3a, vanishing small, making this region

unimportant., F ay;s is given by

F ap1s=(A/41)(F - (H1s | F,[H1s)) F 6,
where

Fi==7v"1+21Inr + 27,

Fyis=(1)""2exp(~7) (n

and A is defined by Gaspari, Shyu, and Das and
Schwartz.!! In Eq. (5), the term 3C, 4w at large
distances is conventionally expanded as a multi-
pole expansion, Physically it represents the in-
teratomic correlation potential in the H-He mo-
lecular system and one cannot in general use a
multipole expansion for it, especially for smaller
values of R. Avoiding the multipole expansion,
Eq. (5) reduces to just

AR =22 <A\I/

i>j

1 |A~ph,s> (8)
IJ

which also follows from diagram 1(b). The two-
center integrals in Eq. (8) were carried out by
the a-function technique.'® The values of f(R), 4w
have been obtained as a function of R and are
shown in Fig. 3, denoted as curve II. Also in
this figure, we have shown the results from I,
denoted as curve I, and the total MO-CI results
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FIG. 3. Fractional frequency shifts versus R(aqy).
III represents the sum of the MO-CI results from Ref.
7 and the vdW contribution calculated in this work.
Note that the logarithmic scale used here allows a vi-
sual compression of the difference between curves
such as between II and IV in the range R= (5-T)a,.

which are the sum of the results from I and the
present work, denoted as curve III. The latter
curve represents the continuous transition from
the short-range positive to the long range nega-
tive values of f(R) discussed in earlier work.%'¢
Also presented in this figure is the curve repre-
senting D/R®= - 13.23/R°® from perturbation cal-
culations involving multipole expansion for sep-
arated atoms.®

The curve II for f(R),qwis in essential agree-
ment at large values of R (>6a,) with the D/R®
curve for separated atoms. As one goes to val-
ues of R <6a,, the curve for f(R),qwdeparts con-
siderably from the D/R® form, goes through a
minimum, and in general does not have the di-
vergence feature of the multipole-expansion ap-
proach. This behavior of A(R),qwprovides justi-
fication for the cutoff procedure applied in earli-
er work.>® What is crucially important is that
at long range the net value of f(R) as represented
by curve III does go negative, in agreement with
earlier ideas and calculations.®% %2 This is true
here for even the least polarizable rare-gas
atom, helium, and of course is known to be of
far greater significance for the heavier rare
gases™® where the total HPS is negative.

On carrying out the usual classical averaging
of the f(R),qwresult in curve II using the inter-
atomic potential V(R) in I and combining with the
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earlier HPS result from I which ignored this con-
tribution, the excellent agreement with experi-
ment obtained in I is no longer valid. The theo-
retical value is now approximately three-fourths
of the most recent experimental result.™

In summary then, while the MO-CI procedure
of Wahl and collaborators for interacting atoms
does incorporate two-particle excitations that
are of crucial importance for the vdW energy at
long range, it must be combined with a procedure
such as the present one in order to study hyper-
fine effects correctly. With the use of such a
procedure, it has been demonstrated that, con-
trary to the recent conclusion in I, but in keeping
with the results of several earlier theoretical in-
vestigations,>*®815 f (R) for large separations of
hydrogen-rare-gas systems is, in fact, negative.
Basically then, we have here an example of the
pitfalls of using energy alone as a criterion of
the detailed accuracy of the wave function of a
system in a variational calculation.

The authors are grateful to Dr. S. Ray for kind-
ly providing us with additional information about
the wave functions presented in I.
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The radial localization of trapped-particle instabilities is studied for a peaked diamag-
netic-frequency profile and for a realistic profile. In the later case it is shown that
modes can be excited only with a high radial wave number. The correspondingly re-
duced coefficient of turbulent diffusion is computed for the collisionless instability.

The existence of trapped particles in a geom-
etry of the Tokomak type is known to give rise
to instabilities in either the collisionless or the . z |
collisional regime.! Although all the param- \/ |
eters of the problem strongly depend on the |
radial coordinate » (Fig. 1), the calculations ; /ie
done so far have not taken this into account; it )
has been assumed more or less explicitly that . e e _l,*_
the modes are strongly localized around a given
magnetic surface. We show here that with the
experimental density profiles presently available, ;
the trapped-particle instabilities can only be - R ~-—a‘
excited with a high radial wave number, thereby
giving a small turbulent diffusion.

With the “banana” excursions taken into ac-
count, 2 the electrostatic potential for the modes

fulfills the following integro-differential equation: FIG. 1. Coordinates of the problem.
_ 1 ) - W -w,* %P
2% (r, 9)-1261/241_@56)/2(1)(2 (2x2-1+cos6) ”2w—_(:)m [(4>>+<A 2 8r’>:|’ (1)

where €=7/R, v, ¢t = v,e ! is the effective collision frequency for the species j, A, is the banana
thickness, and (&)= [g3d0<1>/V,,(G)][#ide/V,,(B)] !, We furthermore have

w,*=(mT/e;Br)[(8/87)1nn,],

wy; = (mT/e;BYR{E (x)/K(x)-0.5+ (2¢'7/q)[E x)/K (x) +x2-1]},

A= (M, T/e*B2%)(2x2~1+cos¥), @)
q=vB,/RBg.
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