
Vox.UME 27, NUMBER 11 PHYSICAL REVIEW LETTERS 13 SEPTEMBER 1971

Theorem on the Vanishing of Z2: Evidence from Electron Scattering that
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We prove that the asymptotic vanishing of the longitudinal part of the total virtual pho-
toabsorption cross section on protons implies the vanihsing of the wave-function renor-
malization constant Z2. Present data indicate that Zz 6 0.1 (consistent with zero) sug-
gesting that the proton is indeed a composite particle.

The probability of finding the proton in its bare
elementary state is usually identified with its
wave-function renormalization constant Z, which

plays a central role in conventional field theory.
Several authors have suggested that the vanishing
of this constant be used as a general criterion for
distinguishing an elementary from a composite
system. ' That this criterion does indeed lead to
a bound state has been explicitly verified in both
the Lee and Zachariasen models. " In general
when Z, vanishes, the field representing the par-
ticle explicitly decouples from the Lagrangian so
that its properties are now completely determined
(at least in principle} from those of the "funda-
mental" fields. The equivalence of this definition
of compositeness with that used in S-matrix theo-
ry (e.g., the absence of both Castillejo-Dalitz-
Dyson poles and Kronecker-delta l-plane singu-
larities) has also been verifed. " Indeed the van-
ishing of the renormalization constants for all
particles has been used as the basis of a field-
theoretic formulation of the bootstrap idea. 4

Nowadays, it is generally believed that the pro-
ton is a composite system either in the bootstrap

sense or in the sense that it is built up from more
elementary consituents. In either case one would
expect Z, either to vanish or to be sma11. It is the
purpose of the present paper to present a theorem
which can be used to verify this expectation.
Loosely speaking, the theorem states that, under
certain technical assumptions (to be elucidated
below), the vanishing of the longitudinal part of
the total virtual photoabsorption cross section on
protons (o~) in both the Regge and Bjorken limits
implies the vanishing of Z, . Recent experiments
appear to be consistent with the asymptotic van-
ishing of OL, although it is difficult to rule out a
small constant value. ' In any case i t zoould ap-
pear that experiment is telling us that the proton
is indeed Predominantly comPosite in nature. It
is interesting to note that recent popular models
of the nucleon which were explicitly designed to
explain the electron scattering data are composite
in nature'; in particular Drell et al. used the van-
ishing of Z, as input for their field-theoretic
model of the proton.

In order to state the theorem more precisely
we introduce the following electromagnetic vertex
function of the proton':

I'"(p, p') = (P'- M) Jd'x e"*(0~T[g(0)j"(x)]~P'),
where q=p '-p. From general invariance arguments, I " must be of the form

I'"(p, p') = [(W +p')/2W][F&(q', W)y" +F,(q', W)io""q„+F,(q', W)q "]+(W-—W}. (2)

The longitudinal cross section al, is defined in the standard fashion; it is related to the conventional
structure functions W» of inelastic electron scattering via the equation"

(, )
v —q'~~ q'+2Mv o~(q', v}

L~ & 1 q2 ) 2 2~ 4~2~
Here v is the energy of a virtual photon of mass q'. By the Bjorken (or scaling) limit we mean q'- —~
with ~ = —2Mv/q' fixed; by the Regge limit we mean v -~ with q' fixed. We can now state the theorem
more precisely: If (a) the F, (q', W) are asymptotically bounded in both variables, (b)

(4)

When O' =M, E, and F, are just the conventional Dirac and Pauli form factors, respectively; in partic-
ular, F,(0, W) = I. It will prove convenient to introduce the analog of the charge form factor,

G,(q', W) = F,(q', W) + [q'/(W+M)]F, (q', W).

lcm [6 (q*, M)+2M (q2, M)]wl,
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and (c) q'o'~ -0 in both the scaling and Regge limits, then Z, = 0.
Now to the proof of the theorem. The vertex function (1}satisfies the Ward-Takahaski identity,

q"I'„(p, p') (p) =q (p),

which, in terms of the I'„reads
(W- M)F,(q', W) +q'F, (q2, W) = W- M. (6)

Bincer has proven that the F, are analytic in the cut W plane, and so, using assumption (a}, we can
write once-subtracted fixed-q' dispersion relations in the variable W. Consider the function Gs(q', W),
Eq. (3); from its definition, Gs has a kinematical pole at W= —M as well as a dynamical cut starting
at W=M+ p, (where p, is the pion mass). Although the residue of the pole is known [see (iv} below], we
choose rather to write a dispersion relation for the function [(W+M)/(W+M)']Gs(q', W). We thus ob-
tain the following representation:

Gs(q', W) = Gs(q', M) + 2M
~

Gs'(q', M)
i'w- M

(W —M) 1 "" (W'+M) ImGs(q', W')

(w+M} w „,„(w -M)'(w —w)
(7)

where the prime on G~ indicates differentiation with respect to 8". Using this representation together
with Eq. (6} and assumption (a} leads to the following equation:

6'(q') =—1 —Gs(q', M) —2MGs'(q', M) = lim —', s ' +(W'- —W') dW'.W t'" (W'+M) ImG (q', W')

n a~+( F' —M (8)

This is equivalent to Bincer's Eq. (23}.
We can determine an upper bound on ImGs(q', W') by applying the Schwarz inequality to the imaginary

part of Eq. (1}. A lengthy but straightforward calculation leads to the following result'.

16'// W (W M) ( q )p (W )W (q W )
(w- M}'- q'

where we have introduced the spectral function of the proton, p, (W'). By using this in Eq. (8) we ob-
tain the inequality

1/2( Wt2) W 1/2(q2 W12) dW12

,„+„p(w —w)(w —M)[(w- M)'- q']"'

Now, from the Lehmann spectral representation one can derive the well-known sum rule for S,:
Z '=1+f" p, (w)dW'.{&+a)'

Provided v~-0 in the Regge limit [assumption (c)] we can use this representation together with the
Schwarz integral inequality on (10) to derive the inequality

w, (q', w') dw'
I
6'(q') I' ~16(~, '-1)(-q'),

(w M)2[(w 2 2].

(10)

(13a)

'//'c'16'(q') I'
—4J,"(du)/(u) q'vL, (q', (u)

'

The proof of the theorem can now be completed
by taking the limit q2- —~ of these inequalities

Transforming to the "scaling" variable &u allows
us to express (12) in the convenient form and by using assumptions (b) and (c), for in that

&pl case the right-hand side diverges and we deduce
Z '-1~ I&pq i I

16I,"d(u W ( ' (u)/(u((u —1)' that Z2=0, q.e.d.
Remarks ~i) A sufficient (but not necessary)

or condition for the dispersion relation (7) to con-
verge is that p, (W )v~(q', W') -0 in the Regge

(13b) limit, which is a relatively weak requirement.
On the other hand a sufficient (but not necessary)
condition for a once-subtracted dispersion rela-
tion for F, to converge is that W'p, (W') o~(q', W )
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E = -'urEQ/(1+R). (14)

The inequality (13) can now be written in a form
more useful for estimating an upper limit for Z,
in the case where R w0:

1-Z2 J, ((u —1) 1+Ri ' (ls)

Although R is consistent with zero in the scaling
limit (it can be parametrized by the function
—q'/v'}, it can alse be fitted by a constant -0.18.'
Using the data for E,(u&) and assuming the inte-
gral in (15) still converges, we can estimate an

-0 in the Hegge limit, which is a much stronger
requirement. However, it should be noted (see
Ref. 8} that in our inequalities only states with
the quantum numbers of the nucleon contribute to
ol„and it is quite possible that this partial cross
section has a more convergent asymptotic behav-
ior than the complete cross section. In any case
we choose to view once-subtracted dispersion
relations as an independent assumption.

(ii) Assumption (a) applied to Eq. (6) implies
that E,(q', ~) = 1; this is the content of Eq. (8}.
Partial support for this, as well as for assump-
tion (a) itself, can be obtained by investigating
the application of Bjorken's "theorem" to Eq. (1).'
Any reasonable model for the commutator [y(0},
j"(0,x)] does indeed lead to E,-1 and is consis-
tent with once-subtracted dispersion relations
for the E,.

(iii) Empirically,

lim Gs(q', M) = 0;
q2~ a%i

it is likewise very reasonable to assume that'0

lim Gs'(q', M) = 0.
~2M m&

In that case
lim &(q') = 1.

q 2w

Experiment also seems to support the Bjorken
conjecture that the scaling limits"

lim W,(q', &u) =—E,(u&),
q2w aN

lim v W, (q', co) =E,(cu)-
q 2~

exist. These clearly imply the existence of

lim W (q, W) =E (W).a2~-~

EJ. can be expressed in terms of the more popu-
lar functions F, and R (the ratio of longitudinal
to transverse cross sections) by the equation

upper limit for Z,. %e find Z2 0.1. This is a
remarkably small upper limit and supports the
view that the proton is predominately composite.

(iv) A slightly alternative way of proving the
theorem is to write dispersion relations for
Gs(q', W), taking into account the pole at W= —M.
Equations (13) can again be derived with the only
difference being that 8'(q'} is replaced by the
combination 1 —Gs(q', M) —(q'/2M)E, (- q', M).
Condition (b) of the theorem can therefore be re-
placed by the assumption that

lim [G (q, M) + (q /2M) F (q, —M) j = 0.
q2~~io

Empirically we know that

lim E,(q', Mj =0
q2w a&

and so the assumption is a reasonable one. "
(v) The theorem can also be proved for the case

of scalar or pseudoscalar particles. The result
is actually somewhat neater than the one consid-
ered here in that the function F(q') turns out to
be 1 —E(q'), where E(q') is the particle's on-
shell elastic form factor.
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From data on muon pairs and by use of the hypotheses of conservation of vector cur-
rent and scale invariance, we estimate the cross section for production of weak vector
mesons W at energies pertinent to Brookhaven National Laboratory, the CERN inter-
secting storage rings, and the National Accelerator Laboratory. With existing data,
these estimates imply a lower Hm&t of 4.5 GeV/c2 for the%' mass.

Several searches for the weak intermediate boson (W) have been carried out using the reaction

P +Z -W+anything,

with the decay of the S' into muons as the signature. " Failure to observe a muon signal from any
source other than the decay of pions or kaons has led to limits on the product of the cross section and
branching ratio of o'~B &2x10 ' cm'. A recent experiment' which measured both the intensity and po-
larization of muons produced by the interaction of 28-GeV protons finds o~B &6&10 "cm'.

A process very similar to Reaction (l),
P+Z- p'+ p, +anything,

has recently been observed at Brookhaven National Laboratory (BNL) in 3P-GeV proton-uranium colli-
sions. 4 The considerable similarity between these two processes holds out the hope of determining the
W-production cross section from direct measurement of the p-pair (or e-pair) process. After summa-
tion over all possible final hadronic states, the differential cross sections for each of these processes
can be written'

(5 ~'+q~q "/M, ') fe'*'*d'~((f z)'"I [v„'(&)+A „'(x))[V, '(p) +A, '(p)] I(pZ)'")
0

«~'i-(Z) 4&'(2v)' (5"'+q"q "lm') fe""d'~((PZ)'"I &„"(~)&.'(p)I(PZ)'"),
0

(4)

where V„', A„', and J„&are the weak vector, weak axial-vector, and electromagnetic currents, 6 the
Fermi constant, q the four-momentum of the W, and v the magnitude of the relative velocity between
the incident proton and the target Z. Equation (4) gives the cross section for the production of either
electron or muon pairs, f'l =e'e or p'p . In computing this lepton-pair cross section [Eq. (4)], we
have neglected the lepton mass, integrated over all configurations of lepton momenta with fixed total
leptonic four-momentum q, and defined m as f(-q'). Although not explicitly shown, averages of beam-
and target-particle spins are to be carried out in Eqs. (4) and (5).

The following remarks can be made about the connection" between these two cross sections provided
by conserved vector current theory (CVC):

(i) Since a Lorentz-invariant pseudoscalar cannot be formed out of three four-momenta, the odd-


