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The reactions He’(p, pd)p and He3, 2p)d have been studied at 35 MeV. A dominant
feature of these data is p-p and p-d quasielectric scattering. A plane-wave impulse ap-
proximation gives a qualitative fit to the He®¢p, 2p)d data, but fails to explain the *Hef,
pd)p data. Various possible explanations are discussed.

Many quasifree scattering (QFS) experiments
have been performed and the data have been an-
alyzed using the plane- or distorted-wave im-
ulse approximation® with the aim of extracting
nuclear structure information. In general, these
methods have been moderately successful even
at comparatively low energies. However, the
inadequacy of the plane-wave impulse approxi-
mation (PWIA)? has been demonstrated® even in
p +d reactions, and it was pointed out*® that con-
tributions from higher-order terms could not be
neglected.

Therefore, it seemed interesting to study the
QFS in He%(p, 2p)d and He%(p, pd)p experiments.

If the mechanisms in the p + He® reaction were

understood, one could try to extract crucial
spectroscopic data of the A =3 system, for in-
stance the He® ground-state wave function.

The target used was 99.99% pure isotopic He?
gas, which was bombarded with the 35.0-MeV
proton beam of the University of California at
Los Angeles (UCLA) cyclotron. The reaction
products were observed using two solid-state de-
tector telescopes. The angular resolution of
each arm was better than +2°, E + AE and AE
signals from the detectors were stored in an on-
line XDS-925 computer, thereby enabling us to
measure both reactions, He(p, 2p) and He3(p, pd),
simultaneously. The energy was determined ac-
curate to better than + 150 keV.
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FIG. 1. (a) Experimental *He, 2p)d cross section
divided by the free pp cross section and phase-space
factor, as a function of the momentum transfer. The
curve is the result of a calculation using the overlap of
the Irving-Gunn 3He wave function with the Hulthén
deuteron wave function. The curve has been normalized
to the data. (b) Experimental *He@,pd)p cross section
divided by the phase space and the free pd cross sec-
tion.

Data were taken at various sets of angles.
Only the data taken relevant to QFS will be re-
ported here. Both (p, 2p) and (p, pd) data exhibit
broad QFS enhancements in the cross sections.
Figure 1 shows the square of the p-d cluster mo-
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mentum wave function |¢(q,) |2 of He® extracted
from the (p, 2p) data [Fig. 1(a)] and (p, pd) data
[Fig. 1(b)] using the PWIA.® oy, was determined
using the relative p-p or p-d energy in the final
state. If the PWIA were correct, the same w(as)
should be obtained from the data taken at differ-
ent angles and, since the He® wave function is
predominantly an S state, the |¢(q,)!? should
show a maximum at q, =0. These features are
clearly demonstrated for the reaction He3(p, 2p)d
in Fig. 1(a); thus the calculation of |¢(q,) (2 us-
ing the overlap of the Irving-Gunn He® wave func-
tion with the Hulthén deuteron wave function
gives a good fit to the (p, 2p) data.

The situation is markedly different for the re-
action He*(p, pd)p. As seen in Fig. 1(b), data
taken at different angular sets do not yield the
same |¢(q,) 1% In Figs. 2(a) and 2(b) the data
were compared with the PWIA calculation using
a Hulthén-type wave function (curve A). It is
clear that this calculation does not fit the (p, pd)
data. Similar results are obtained if one uses
the Irving-Gunn [curve B, Fig. 2(b)] or Irving
wave function, or the He® wave function which
exhibits the effects of the hard core. All the
data show that the peak in the cross sections is
shifted by ~1-3 MeV from the PWIA predictions,
and, further, indicate a structure in the neigh-
borhood of the QFS enhancement.

We have considered various explanations for
these anomalies: (1) Shifts of the QFS peaks
have been observed in other reactions and it has
been suggested” that momentum transfer to the
system, before the QFS, due to the long-range
Coulomb force can explain these shifts. Such an
explanation works for the data of Ref. 7, but does
not explain the He*(p, pd)p data. In fact, an at-
tractive long-range force would be required to
reproduce the observed shift [Fig. 2(a), curve
B]. Although the inclusion of a long-range at-
tractive force in the initial state is questionable,
it does improve the fit to the shape of the He3(p,
pd)p data and does not alter the shape of the cal-
culated He®(p, 2p)d spectra; however, it does in-
troduce serious discrepancies in the relative
magnitude of the He*(p, 2p)d QFS cross section
observed at different angles.

(2) The study® of the reaction H3(p, pd)n where
we observe a similar shift in QFS peak indicates
that the anomaly is not due mainly to Coulomb
interaction in the final state.

(3) The effect of the p-p final-state interaction
on the QFS was investigated by modifying the
PWIA cross section by the multiplicative factor



VOLUME 27, NUMBER 11

PHYSICAL REVIEW LETTERS

13 SEPTEMBER 1971

(pb/sr*MeV)
P g = =
S S
T T 1
1

=

2

do/dQ,dQ dE

1 1 i 1 1
5 17 19 21 23
Ep (MeV)

(b/sr* Mev)
2

2

d%/d0? dE

R

I A R A B T R
E, (Mev)

FIG. 2. (a) *He(,pd)p cross section at 6,=6,=35°.
Models: curve A, Hulthén-type wave function (¢~47
—e7%")/r, a=0.4203 fm"!, 5=1.33 fm"!, using the ra-
dial cutoff R =3.9 fm; curve B, same as A with the long-
range attraction interaction in the initial state corres-
ponding to the momentum transfer of 100 MeV/c; curve
C, same as A with FSI enhancement (see text). All cal-
culations have been normalized; normalization factor
N=0.83, N=0.5, and N=2.5, respectively. (b) *He(p,
pd)p cross section at 6,=0,=45°. Models: curve 4,
Hulthén-type wave function same as in (a), N=1;
curve B, overlap of the Irving-Gunn ’He wave function
with the Hulthén deuteron wave function, N=0.29; a D-
state SHe Hulthén-type wave function assuming P,=15%
and no radial cutoff is also shown.

(F,cosd, +G,sinb,)?/ sin%kr.? In the QFS region
the p-p relative energies range from 4 to 14 MeV
and the effective-range approximation cannot be
used. Curve C in Fig. 2(a) shows the results of
such calculations. One sees that inclusion of the
p-p final state interaction (FSI) as a factor which
modulates the QFS process accounts only for a
fraction of the energy shift, which is to be ex-
pected in view of the large p-p relative energies.
The p-d FSI has not been taken into account.

(4) Various approaches could be used for calcu-
lating the p +d —p +d vertex. Since this vertex is
further off the energy shell than in the corre-
sponding case of the reaction D(p, 2p), we investi-
gated to what extent the inadequate description of
the p-d vertex contributes to these anomalies.
We have extracted o,, from the PWIA and these
0,q are inconsistent even for g, =const. We in-
terpret this as an indication that the anomalies
are not due mainly to the pd vertex.

(5) The structure in the *He(p, pd) spectra can
be due to the D-state component of the *He wave
function, resonances in the p +d ststem, and/or
the contributions of other reaction mechanisms.
Calculation of the D-state contribution was done
using a Hulthén-type wave function with four ex-
ponential terms [Fig. 2(b)]. The structure is
much too narrow to be generated by the D state.
A kinematic analysis of the spectra in terms of
A =3 resonances has been done, but the interpre-
tation of the structure requires a better under-
standing of the reaction mechanism.

The study of the angular dependence of the re-
action *He(p, pd) demonstrates a drastic deviation
from QFS [e.g., Fig. 1(b)] and indicates the im-
portance of other mechanisms.
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Based on the dual amplitude analysis of the “ditriple’ Regge limits in inclusive hadron-
ic reactions, the general properties of the Reggeon-Reggeon amplitude are conjectured
and a duality sum rule is suggested. From this sum rule, predictions are made on the
two-Reggeon—particle and triple-Reggeon couplings for diffraction dissociations.

We present in this Letter a bootstrap calculation of the Regge parameters of inclusive processes by
relating them to those of exclusive reactions through the finite-energy sum rule for a four-Reggeon
scattering amplitude; that is, we relate the triple-Reggeon vertices' to two-Reggeon—particle cou-
plings.? We apply our method in particular to diffraction-dissociation phenomena.?

Our method is motivated by the observation that the two-particle production cross section in the “di-
triple” Regge limit* can be obtained in two ways: In the inclusive reaction a +b - x, +x, +anything, near
the resonant pole ¢ in the missing mass squared M2=(p,+p,— P, —p,)?, the cross section takes the form

SEnExzd_SEdl%sp_zEfoc |T 55?0002 -m 2), (1)
where T,, denotes the scattering amplitude for a +b +x, +x,+c. At high energy with s ; and s,; fixed,
T,, has a double-Regge representation [see Fig. 1(a)]

(= @) ™ (= agy)®
sina sinma 5

T23=)3ai ﬁbfy (2)

where ay...;=d’s;...;+a;...;(0), a’=1, B;; is the “reduced” Regge residue, and G is the “reduced” two-

a b

(a) (b)

FIG. 1. Two modes of describing the “ditriple” Regge region: (a) resonance saturation, (b) Regge asymptotic
extrapolation.
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