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is always smaller than the frozen-lattice gap as
expected.

The dispersion curve of the magnons starts
very slowly in the small-q region. So in an in-
elastic neutron scattering or a high-frequency
ferromagnetic resonance experiment the free-
lattice-mode contribution is totally buried under
that of the frozen-lattice mode because the latter
has an overwhelmingly larger density of states.
However, at low enough frequencies and with an

applied field near the spin-flip value, the num-
ber of thermally excited free-lattice magnons
may be large enough so that they produce a siz-
able amount of resonance absorption of the micro-
wave energy. The rf field at lower frequencies
penetrates deeper into the specimen, so it cou-
ples more effectively with the free-lattice mode.
Since the magnetoelastic interaction is stronger
at lower temperatures, it helps to separate the
two gaps so the free-lattice mode will stand out
more clearly. All of these factors indicate that
the free-lattice mode should be observable at low

frequencies, low temperatures, and near the
spin-flip field. The details of our calculation of
the microwave absorption as a function of fre-
quency, dc field, and temperature will be pub-
lished elsewhere. " In the following Letter Hart
and Stanford" compare their experimental re-
sults with our calculation for Tb metal and low
microwave frequencies. The two results are in
excellent agreement, providing definitive support
for the free-lattice mode proposed above.

The authors are indebted to Dr. J. L. Stanford,

Dr. T. K. Wagner, and Mr. L. W. Hart for dis-
cussions and criticisms regarding this work.
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Our results experimentally confirm free-lattice-model behavior in Tb at low micro-
wave frequencies, as predicted by Vigren and Liu. The resonances below a temperature
of 140 K were only observable when the external magnetic field was not precisely aligned
along an a axis in the hexagonal plane of the sample.

Apparent contradictions between the high- and
low-frequency ferromagnetic resonance results
in Tb and Dy have prompted much theoretical
speculation. ' Vigren and Liu' have proposed a
theory explaining these apparent contradictions
by predicting free-lattice-model behavior in
Tb and Dy at low microwave frequencies and
frozen-lattice-model behavior at high micro-

wave frequencies. The experimental data pre-
sented in this Letter provide strong evidence in
support of their theory, supplying a satisfying
resolution to the apparent contradictions which
have existed for some time in the literature.
(Previous work on Tb at low frequencies did not
go below T= 340 K which is the critical region
for testing the theory of Vigren and Liu. }
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Ferromagnetic resonance studies in Tb at 100
6Hz by Wagner and Stanford' have provided the
definitive experimental evidence for deciding
between several spin-wave models proposed by
Cooper. ' The results showed conclusively that
the frozen-lattice model was appropriate for
Tb at high frequencies. In contrast, lower-fre-
quency results, for example the 37-GHz work of
Rossol and Jones, ' supported the free-lattice
model for Dy. Recent 100-GHz work on Dy by
Wagner and Stanford' has shown that again, at
high microwave frequencies, the frozen-lattice
model is adequate to explain the experimental
data. In this Letter we present experimental
evidence similar to the work of Rossol and Jones'
in Dy, supporting the free-lattice model in Tb
at low microwave frequencies as predicted by
Vigren and Liu.

The contrast between the 100-GHz Tb data of
Wagner and Stanford' and our 24-GHz data in

Fig. 1 is especially evident at T = 100 K where,
for similar experimental configurations (given
in Fig. 1 by the closed triangles), Wagner and
Stanford observe a resonance at 6 koe (close to
the domain alignment field), while Fig. 1 shows
a strong resonance at almost 12 kOe. These
field differences for different microwave fre-
quencies are adequately accounted for by assum-
ing that the frozen-lattice model applies at 100
GHz and the free-lattice model at 24 GHz as
predicted by Vigren and Liu. If the frozen-lat-
tice model is applied at 24 GHz, all of the closed
triangles for T & 140 K in Fig. 1 would be due to
off-resonance absorption, and the 100-GHz Tb
data for T & 140 K would be expected to have al-
most the same field dependence as the closed
triangles in Fig. 1, but with even greater inten-
sity, ' which is obviously not the case.

Figure 2 shows tracings of power absorption
versus applied magnetic field (Hd, ) for Hd, aligned
close to the a axis and along the b axis (compare
with Fig. 1).

The theory of Vigren and Liu assumes the crys-
tal strains to be locally coupled to the ionic
spins at all times. For zero-wave-number
(q=O) spin waves, all spine oscillate in phase,
and the magnetoelastic contribution to the Ham-
iltonian is that due to a single spin multiplied by
the number of spins. This energy is invariant
under rotation of the magnetization in the hex-
agonal plane to first order, so the free-lattice
model developed by Cooper' holds, which means
there is essentially no magnetoelastic contribu-
tion to the spin-wave spectrum at @=0. Hd, in
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the hard (1120) direction can lower the spin-wave
energy gap to our experimental frequency in this
model.

For @40 spin waves, however, the spins are
not in phase; and this phase difference causes a
cancelation of all but the equilibrium magneto-
elastic energy, resulting in the frozen-lattice
model proposed by Turov and Shavrov' and ex-
tended by Cooper, ' giving a large magnetoelastic
contribution to the spin-wave spectrum. An ap-

FIG. 1. Plot of the field values of power-absorption
maxima as a function of temperature. The diagram
gives the experimental configuration for the closed and
open triangles. Triangles with the vertex pointing up
or down represent data taken while increasing or de-
creasing Hd~ with time, respectively. A, calculation
by Vigren and Liu of Cooper's free-lattice-model ab-
sorption maxima at 24 GHz for Hd~ II a axis. B, predic-
tion by Vigren and Liu of off-resonance absorption max-
ima at the domain-alignment field in Cooper's free-lat-
tice model for Hd~ lla axis. Off resonance in this case
means that the actual resonance conditions are satis-
fied for a value of Hd, below the domain-alignment
field. Becauseof the large linewidth of the resonance,
its trailing edge is observed for Hd~ greater than the
domain-alignment field. The open triangles are the
domain-alignment field determined by the knee of off-
resonance absorption when Hdc ~~b axis. QEdc ~I& axis
causes the q =0 spin-wave energy to become a mono-
tonic increasing function of Hd~ with an energy too
high for on-resonance absorption at 24 GHz at the do-
main-alignment field. ) C, paramagnetic resonance.
The amplitude of these resonances decreases rapidly
with increasing temperature. D, region of nonreso-
nance absorption maxima (not platted) due to domain
alignment when using the thicker sample with Hd~ ori-
ented 1 from the a axis.
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FIG. 2. Tracings of typical power absorption versus
external-applied-field curves. The experimental con-
figuration is shown in the diagram.

plied magnetic field cannot lower the spin-wave
energy gap to our experimental frequency in
this model.

In a ferromagnetic resonance experiment the
largest value ot' q excited is q -=1/6, where 6 is
the microwave skin depth. In such an experiment,
Vigren and Liu' show that the states of q&1/6
behave essentially as q=O free-lattice states.
If the experimental microwave frequency is low
enough, only the q=O free-lattice mode should
be observable because the applied field along
(1120) lowers the energy of the q=0 free-lattice
mode to that of our microwave energy, while the
q=0' (1/6 s q (2m/c, where c is the (0001) lattice
spacing) frozen-lattice mode remains well above
our experimental frequency.

Two disk-shaped Tb samples with the c axis
normal were used in this experiment. One of
them was the same as the thinner crystal re-
ported in previous work, ' except that its dimen-
sions were changed to 5.9 mm diam and 0.3 mm
thickness. This sample was mounted as in Ref.
7 and was used only for the data taken at T = 143
and 161 K. It was the thinner of the two samples
made, and so was least subject to demagnetizing

effects affecting domain alignment. (The reso-
nance field depends on the domain alignment
field at T= 143 and 161 K.) Data at all other tem-
peratures were taken on a sample having 9 mm

diam and 1.2 mm thickness cut from the same
large crystal as the first sample. The external
magnetic field Hd, was applied in the plane of the
disk-shaped sample, and the sample was aligned
with a b axis (easy magnetic direction} along the
microwave magnetic field 0,&.

The data were taken by measuring direct ab-
sorption as a function of temperature and Hd,
(where Hd, could be oriented at any angle with

respect to Hz). The closed triangles in Fig. 1

are in good agreement with the free-lattice mod-
el of Cooper' calculated by Vigren and Liu' using
the experimental twofold and sixfold anisotropy
constants measured by Rhyne and Clark. ' On the
basis of these data, we believe that the rise in
resonance field with decreasing temperature ob-
served by Bagguley and Liesegang" in Tb at 10
GHz for temperatures above 140 K was due to a
combination of off-resonance-absorption and

domain-alignment effects, and was not an indica-
tion of free-lattice-model behavior. The frozen-
lattice-model interpretation of the data of Wag-
ner and Stanford' at 10 GHz for temperatures
above 175 K does not contradict the free-lattice-
model interpretation of Vigren and Liu since the
two models give similar predictions for T)140
K.

In this Letter we are concerned with the low-
temperature absorption peaks (T &110 K} ob-
served when IId, is aligned about 1 from the
a axis. We attribute these peaks to on-resonance
absorption in the free-lattice model for the fol-
lowing reasons (some of which were discussed
in more detail earlier): (1) The amplitudes are
large and the linewidths are comparatively nar-
row, indicating on-resonance absorption. (2) The
temperature dependence of the peak is that of
the free-lattice model, which departs significant-
ly from that of the frozen-lattice model for T
&140 K. (3) Anomalies in the magnetostriction"
and magnetoresistance" of the heavy rare-earth
metals (i.e. , Tb, Dy, Ho, etc.} are associated
with domain-alignment and magnetic phase
transitions. Since our peaks in power absorption
for T (140 K occur exclusively in the ferromag-
netic phase of Tb above the domain-alignment
field, they should not be due to changes in back-
ground conductivity or magnetostriction. (4) The
peak at T= 86 K (see Fig. 2) has a sin'y ampli-
tude dependence (where rp is the angle between
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&,&
and &d, ) as expected for a spin-wave reso-

nance.
At T= 110 K a second absorption begins to oc-

cur at higher fields (see Fig. 2). The second
absorption is very broad and occurs also at lower
temperatures when Hd, is rotated several degrees
from the a axis. Present theory offers no satis-
factory explanation for the absorption peaks ob-
served for Hd, aligned from 3' to 10' from the
a axis in the basal plane of the sample when T
&140 K, which will be discussed in a later pub-
lication.

A second discrepancy between theory and ex-
periment is that no absorption peak is observed
when Hd, is aligned exactly along the a axis,
contrary to the prediction of Cooper's free-lat-
tice model. ' Our experimental results reveal
that peaks with the temperature dependence pre-
dicted by Cooper for the free-lattice model actu-
ally occur for Hd, from 1 to 2 off the a axis
(see Fig. 1).

In conclusion, our results at 24 GHz experi-
mentally confirm free-lattice-model behavior
in Tb at low microwave frequencies where the
q=0 mode can be excited as predicted by Vigren
and Liu, furnishing a satisfying resolution to the
previously paradoxical ferromagnetic resonance
data on terbium.

We wish to thank Dr. D. T. Vigren and Profes-
sor S. H. Liu and Professor T. K. Wagner for
helpful discussions. We are also grateful to

Professor F. H. Spedding for the loan of the high-
purity Tb metal and to Professor R. G. Barnes
for the loan of the 24-GHz components used in
this investigation.
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The recently determined value of the quadrupole moment of Fe has been shown to
explain consistently the observed quadrupole coupling constants associated with two non-
equivalent Fe sites in yttrium iron garnet.

In a previous publication' the molecular-orbital
method for a complex imbedded in a lattice has
been shown to resolve the ferrous-ferric anomaly
in the quadrupole moment of Fe" by considering
the cases of Fe,O, and Al,O,:Fe". It has also
been established that the quadrupole moment of

the iron nucleus is 0.18 b within 10% accuracy.
However, it is still not clear whether this value
of the quadrupole moment can also explain the
observed quadrupole coupling constants in a
variety of systems without fitting" with param-
eters such as polarizabi1ity and antishielding
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