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readily extended to such a case but a more com-
plicated result is found.
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The s u symmetry of s-ch~rt~el helicity amplitudes is investigated seithout the ex-
change mechanism being specified. Conclusions are drawn concerning the possibility of
phase assignment to scattering amplitudes at high energy. Difficulties are found in ab-
sorption models with J~ ys behavior.

Recently a number of models assigning a phase
to s-channel helicity amplitudes at high energy
have been proposed' without the exact nature of
the t-channel exchange mechanism (such as fixed
or moving poles, cuts, etc.) being specified. As
is well known, such an assignment is indeed pos-
sible if an amplitude has definite v- —v symme-
try [v =-,'(s -u)] and v" behavior at high energy. '
In this paper we use only C, T, I', and SU(2)
[SU(3)] to find s-channel helicity amplitudes obey-
ing the above mentioned symmetry.

Let us consider the s-channel reaction ab - cd.
Since v - —v correlates this reaction with ad- cb
(u channel), it corresponds to the interchange of
particles d and 5 in the t-channel reaction db- ca. Thus in order to obtain symmetry under v- -v for the s-channel helicity amplitudes, here-
after denoted by G, we shall first look for sym-
metry under d —b in the t-channel helicity am-
plitudes, denoted by I'.

We find that such symmetry exists for the t-
channel helicity amplitudes in the following two
cases: (a} Particles d and b belong to the same
multiplet M of SU(2) (e.g. , pv'-b, "v', b =v', d
=+) or SU(3) (e.g. , PK -A'w', b K, d =v');
(b) particles Z and b belong to multiplets of SU(2)
or SU(3) connected by change conjugation C, and
particles c and a remain in their multiplets un-
der C (e.g. , v p-A, 'n, v p-K*'Z ). For both

cases the following symmetry holds for the t-
channel helicity amplitudes:

E~, ~~~, ~,'(t, v) =(- I)"&E~ „„~„'(t,—v), (1)
where i labels t-channel matrix elements re-
duced with respect to the internal symmetry
[SU(2) or SU(3}], $A) denote the helicities of the
particles in the t-channel, and (-1)"~ =+1 is a
phase independent of helicities.

For case (a), Eq. (1) follows immediately from
the statistics' and from the well-defined symme-
try g, of the irreducible representation M SM
labeled by i For case .(b) one uses G and C in-
variance to prove Eq. (1). Consider for exam-
ple, the t-channel reaction pvnOp (pure 1=1).
Using G parity and fermion anticommutation re-
lations one easily obtains Eq. (1) with g, =+1. A
similar proof holds for all other class-(b) reac-
tions in the SU(2) case. For b and d belonging to
SU(3) octets one proves Eq. (1}[with i denoting
the reduced amplitudes 1, 8„, 8 „8„,8„, ~(10
+ 10*), or 27] by applying statistics and G parity
to states of I=O in 8Q 8.

Whenever Eq. (1) holds in the physical region
of the t channel, we assume its validity for the
whole analyticity domain of E in v and t.

Let us now transform Eq. (1) from the t-chan-
nel helicity amplitudes E to the s-channel heli-
city amplitudes G, using the crossing relations
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of Cohen-Tannoudji, Morel, and Navelet. ' The crossing as given in Ref. 4 reads'

'(v, t) = (- I) "'""'e»['"(4-~.}]Z d "(X.) ~
' 'd "(X )x

' '
c tf a b

xd"(X,), "'~"(X.)~,"'F~, ~ ~ ~ (t, v),

where o =1 if a and d are fermions and 0 otherwise, and Xj are the crossing angles defined in Table
XI of Ref. 4. G', as given in Eq. (2), is evaluated now in the limits v- ~+is and (by analytic continua-

tion) v- —~+is, at fixed t. To compare these two limits we use Eq. (1) together with the equations

lim cosy, = lim cosX;, lim sing j = lim sing, ,
v~ ~+f4 p~ ~ op+ jg v~ ~+ fr p~-ce+jg

and y, =x„+w at I vl- ~ (for m, = m~, valid for the cases treated here}, and the well-defined proper-
ties of the d functions. We obtain for classes (a) and (b} the asymptotic relation (valid for Ivl- ~)

(3)

Therefore the combinations

H, '(v, t)=a[Gal, q, ~ x,'(v, t)+(-I) Gx z~ x ~,'(v, t)]

(where y = q, +2s~+I, —A ~) have the definite v- —v symmetry

FI,'(v, t) = a if, '(- v, t) .

Thus, if one assumes v'4~'~ behavior for H, , respectively, it follows from the Phragmdn-Lindel5ff
theorem and from real analyticity' that asymptotically

H, '(v, t) =f,(v)v"'" exp[- ~m a(t)],

where f,(t) are real functions of t.
The amplitudes G themselves have definite v- —v symmetry whenever [see Eq. (3)] (I) I, =A., =O;

(Il) i, =1,= 0 (using parity conservation); or (III) I,= A.„and -L, =X~, and the s-channel reaction
transforms into itself under time reversal. In all the above cases f, or f is identically zero [see
Eqs. (3), (4), and (6)]. In other cases one obtains

Gz, ,z~ ~, ,z~'(v, t) =f v 'exp(- m~'ma+) +if v exp(- ~isa ).
I.et us discuss the consequences of Eq. ( I) in the limit v - ~. For a, c a the term with a = max(a„
a ) dominates in Eq. (I), hence

x x xg (v t} + Gx. , -xg, x -x (v t)

For a, Wa,

IGg g g g (v& t) )
= IGy -g g -g (v& t)l&

(4)

(8)

(9)

Eqs. (8) and (9) put severe restrictions on absorption models of helicity amplitudes for which Ia, —X,
+4~]4 )A, +A.b

—A. —Apl. In Shtokhamer, Berlad, and Eilam, ' it is proposed that iG lfx: J~~v . An
inconsistency of this assumption can be seen by considering the helicity amplitudes G, „»,„„(v,t)
for the reaction w P-p'n. One should have IG, „/. . ./, I J,v, IG, ,/. ..», l~ J,v . However,
from Eqs. (8) or (9) it follows that I J, I ~ [ J, (. Hence, since J,(RV -t) = —J,(RK- t) at high It I only, one
cannot hope for this model to be valid at small and intermediate I t I.'

If a, ma then ImG, ,», „,=+ImG, », , „,[Eq. (8)]. Therefore the proposal of Harari, ImGi„~
~J&zv, is also inconsistent. However the model of Harari is satisfactory for our purposes in the
case of a, ta . Using the assumptions

ImG, ,», »,(v, t) ~ Jo(Rv —t)v", ImG, », , »,(v, t) ~J,(Rv —t)v"

and Eq. (7) one easily obtains

J„(Rv t) +J,(RK—- t) J~(RK- t) —J,(Ru t)—
2 sinva/2 ' 2 co@ra/2
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[The functions Za„(Rv —t) may still be multiplied by factors of the form e"'). We find that the helicity
amplitudes G are no longer proportional to J» as expected from naive absorption models, ' and they
may diverge whenever single =0.

To summarize: In the context of absorbtion models with phase, the assumption which does not lead
to inconsistency is ImG&z&(x: J» together with a, =a . However, according to our treatment here,
(1) there is only a limited class of reactions [types (a) and (b) ] for which v ——v symmetry may exist at
high v for s-channel helicity amplitudes, to which an asymptotic phase may be assigned. Thus reac-
tions like wN p-L are excluded from this category (2.) Even for reactions of types (a) and (b) the
above-mentioned symmetry does not hold for all individual amplitudes as for example G] ]/2 0 1/2 in
mN- pN.
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It is shown that in dual-resonance models with no ghosts the least massive spin-J me-
son which couples to baryons must have I =0 and P =|-"=(-1) for J~Jo {number of sub-
tractions at t =0), e.g. , M~-Mp, My - jtfz~, etc. If degeneracy occurs, e.g., M~=Mp,
then the I=0, P =C = (-1)~ coupling must dominate. Inequalities are found among cou-
plings of arbitrary-spin baryons to leading mesons. For u-nucleon coupling, gy"
+ (ifl2m)o""q„, with M~ &M& one finds that g (fM~I2m-) With u-p. degeneracy, g~t
-gz - (M~I2m)tg~2- f&2(. Bounds on SU(3) mixing angles and baryon masses are also
found .

We present a theorem proven by one of us
(D.C.) which applies to a wide class of zero-width
dual resonance scattering amplitudes. We apply
it first to the sample example of KK scattering
and then to the much more general problem of
arbitrary-spin, equal- or unequal-mass baryon-
antibaryon (B,B,) scattering. All of our results
follow from model-independent features of duality
in the zero-width approximation. Thus, we avoid
the problem of assessing the significance of pre-
dictions of a specific model such as the Venezia-
no model' which suffers from problems with
ghosts' and tachyons, ' or the naive quark model
which is beset with difficulties for processes in-

volving baryons. Our results permit direct ex-
perimental tests of duality provided the width-de-
pendent corrections are small. All presently
available data which we have examined are con-
sistent with the predictions of the theorem.

The statement of the theorem, which can easily
be proved, 4 is as follows: If (a) M(s, t) is an ana-
lytic function whose only singularities are simple
poles at s =s,. & 0 and t = t,. & 0, i,j =0, 1 2 ~ ~ ~

where s, and t, are real constants, (b) . N(s, t) is
polynomially bounded away from its poles as Is I

—~ for fixed t, (c) residues of poles in s are
polynomials in t, and (d) with the possible excep-
tion of a finite number of these residues, the co-


