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An eikona1 expansion is considered which yields an impact-parameter representation
for the scattering T matrix. The dependence on momentum transfer is summed to a11
orders by means of a conjecture to obtain a standard impact-parameter representation.
As a result, phase-corrected eikonal formulas are obtained which are shown to improve
on the Glauber approximation systematically at large scattering angles, in contrast to
the Abarbanel-Itzykson approximation. Regge behavior is found.

The best known development of eikonal scat-
tering theory is that of Glauber. ' Glauber's well-
known formula takes the form of a two-dimen-
sional Fourier transform of the impact-param-
eter representation of the T matrix:

T=vi fd'b e'' T(b), (1)

T(b) =T 0 (b) =exp[iZo(b)] —1.

The eikonal phase 1to(b) is an integral over
the interaction in the z direction which is chosen Tp)(b) =cos-,' &expiig, (b)/cos-,'0] —1, (4)

to be parallel to the average momentum, k
=-', (k,. +k, ):

y, (b) = —1 (dz/v) V(r).

In a very interesting approach reported in this
Sou»al, Abarbanel and Itzykson~ have suggested,
for nearly forward scattering, a simple eikonal
expansion about the average momentum, Their
approximation is, to lowest order,
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from the exact propagator

G '=K'/2' —I'/2' —V+ir! . (6)

This defect is written

N=g ' —G '=A(g '+ V)+N„

where

N, = (P —kf) (P —k, )/2M and I = 1-cos—,
' 8. (8)

(5)
The formal expansion for T is

where the only difference involves replacing
the velocity v by v cos& 8. The result is, how-
ever, less fortunate than (2) at large angles.

This Letter summarizes an expansion which
is related to that of Abarbanel and Itzykson,
but is based more closely on the intuitive as-
sumptions of Glauber. The eikonal expansion
of the T matrix is a perturbation series in
powers of the operator N which represents the
defect of the eikonal propagator,

g ' = v (k —P) —V+ ir!, v = (K/M)z,

T= (V+ VgV)+ VgNgV+ VgNgNg V + VgNgNgNgV+ ~ ~, (9)

where g has been chosen so that the matrix element of the zero-order term, T!'i = (k& I V+ VgV!k,.),
is Glauber's formula. This eikonal series is perhaps less intuitive than the symmetrized expansion
of Sugar and Blankenbecler' but has the clear advantage of automatically yielding an impact-param-
eter representation which takes the form

T(b)=(1 —A)T )(b)+r (b)+g gX" 9' !(b)y
-2 -2 m 2 (10)

(11)

(12)

&'"(b) =exp[ix, (b)][ixx,(b)+ir, (b)];
V")(b) = exp[i X,(b)g(ql/8K')[1 —i Xo(b)] + [iXX,(b) + i r, (b) ]'/2! + 2i», (b) + i r, (b) —ar, (b)};
&'"(b) = exp[iX.(b))(- (q'/8K')[2+ iX,(b)]b r, (b)]+ (Xq'/8K')X. '(b)+ [iXX.(b)+ i r, (b)]'/3! + i&*r,(b)

+ 3iX r, (b) —2X(o,(b) + [iXX,(b ) + i 7;(b)][iX r, (b) + i r, (b) —(u, (b)] + i 7,(b) + iy,. (b) —&u, (b)}.
The objects appearing in (ll) —(13) can be calculated from the following formulas in which we write
the spherically symmetric potential as V(r) = V,U(r) and employ the transverse derivative operations
p =bnan/sbn.

(13)

where (",) is the binomial coefficient. Four parameters are important in the expansion: q, the
moment transfer (q = 2K sinze); KR, the number of projectile wavelengths inside the range R of the
interaction; Ka, the change in the interaction in one projectile wavelength (IvVI= IVI/a); and e= V,/
2E, the ratio of interaction strength to twice the center-of-mass energy.

When the interaction is a spherically symmetric potential, the first three eikonal corrections are
reducible to tractable forms which are summarized by the following equations:

Xo(b) = —2K'f dz U(r),

r, (b) = —Ke'(1+ p, )f dz U (r),

r, (b) = K~&(1+-,' p, + -,'p —)f, dz U'(r) - b[X, '(b)]'/24K',

r, (b) =-Ke4(—,
' +—"p, + p +~~ pn) f dz U (r) —be (b)[X~'(b)]~/8K,

p, (b) = —Ke'(1+ —,
' p, + ,'pm) f dz—[(2K) 'BU(r)/Br]'

(u (b) =bx '(b)V'X, (b)/8K'

(un(b) = [bXo'(b)V r, (b) + b r, '(b)V'X(&(b)]/8K .

(14)

(15)

(16)

(17)

(18)

(19)

(20)
These formulas yield analytic results for Coulomb, Yukawa, and Gaussian potentials, and we find
the remarkable fact that all of the eikonal phases except X,(b) vanish for a Coulomb potential.

The higher-order eikonal corrections are prohibitively complicated with the exception of a simple
term, appearing in all orders, of the form

exp[iX, (b)][iXX,(b)+ i r, (b)]"/n!. (21)
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The correction terms starting in K" which
involve qm/8K' arise from integrating by parts
terms involving —V~/8K'. These terms are con-
jectured to cancel the class of terms involving

~ = 1 —(1-q'/4K*)

= q'/8K'+q'/128K4+q8/1024K'+ ~ ~ ~ (22)

in a power-by-power way. The beginning of this
behavior can he seen in Eqs. (11)-(13); it must
continue if the eikonal expansion is to retain the
virtue of the Glauber term T" by yielding an
exact Coulomb-scattering result. If we assume
that the conjecture is correct, the results given
above simplify at all momentum transfers to
the form they take at q =0. In this limit, we find
an ordered set of corrections to the Glauber
approximation to be

T'"(» =exp(i[XO(b)+ ~,(b)]3-1, (23)

T~ ~~(h) = exp(i[)( (b) + r, (b)+ 7, (b)])

x exp[- &u, (b)] —1, (24)

T~~&(b) =exp(i[x (b)+ r, (b)+ r, (b)+ r, (b)+y, (b)])

&&exp(- [&u~(b)+&a~(b)]}—1, (25)

where exponentiation of r, (b) is justified to all
orders Expo. nentiation of 7~(b) and &,( )bis
justified through third order in the expansion
and is motivated by the resulting correspondence
with the expansion of the WEB phase in powers of
eU(r) The .exponentiation of the real phases
vm(b) and &us(b) is justified through third order
in the expansion and is motivated by the unitarity
requirement 5(b) I& 1 [S(b) = T(b)+ 1] for the im-
pact-parameter representation (1).

Elimination of the explicit q2 dependence from
T(b) puts the above phase-corrected eikonal
amplitudes in direct correspondence with the
standard impact-parameter representation4 as-
sociated with the inverse Fourier transform of
T(qm). This is, in effect, the underlying sym-
metry which we have conjectured in summing
the q dependence in the eikonal series (10).

Figure 1 shows the eikonal results for scatter-
ing hy a Yukawa potential from (2) and (23)-(25)
in comparison with (4), the Born approximation,
and the partial-wave result. The parameters
used in the calculation correspond to a collision
of a slow proton (125 eV) with a hydrogen atom,
assuming an interaction potential V,e ""/pr with
strength V, =2 By=54.4 eV and )L(. =2a, ', The
eikonal amplitudes T'", T ', and T' ' are
seen to converge to the magnitude and phase of
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FIG. 1. Differential cross section and phase of scat-
tering amplitude for Yukawa potential: T =partial wave,
T =Born, T =Abarbanel-Itzykson, T~=Glauber; T(8 — . 0)
T ~, and T" ~ are the first, second, and third phase-
correct eikonal, respectively.

An explicit demonstration of unitarity for the
phase-corrected eikonal amplitude (25) can be
made using this result.

Numerical comparisons for potential scatter-
ing have also been made for Gaussian and Fermi
potentials for which the phase-corrected eikonal
formulas converge less uniformly to the exact
results but do give a consistently improving re-
sult if the momentum transfer is not too large.

The eikonal expansion for potential scattering
serves as a guide for the more interesting case
of scattering by compound systems. 'She phase-
corrected eikonal formula T'" of (25) can he

the partial-wave scattering amplitude.
Finally, we note that the dominant Inb singu-

larity in the Yukawa phases as b-0 gives rise
to explicit Regge behavior for large q'. &' '(q*)
~q', where

n =[-1+-,'e'-
—,'e']+i(K/p)

&&[ —6+a —2e +
6 e —~~e (p/K) ]. (26)
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readily extended to such a case but a more com-
plicated result is found.
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The s u symmetry of s-ch~rt~el helicity amplitudes is investigated seithout the ex-
change mechanism being specified. Conclusions are drawn concerning the possibility of
phase assignment to scattering amplitudes at high energy. Difficulties are found in ab-
sorption models with J~ ys behavior.

Recently a number of models assigning a phase
to s-channel helicity amplitudes at high energy
have been proposed' without the exact nature of
the t-channel exchange mechanism (such as fixed
or moving poles, cuts, etc.) being specified. As
is well known, such an assignment is indeed pos-
sible if an amplitude has definite v- —v symme-
try [v =-,'(s -u)] and v" behavior at high energy. '
In this paper we use only C, T, I', and SU(2)
[SU(3)] to find s-channel helicity amplitudes obey-
ing the above mentioned symmetry.

Let us consider the s-channel reaction ab - cd.
Since v - —v correlates this reaction with ad- cb
(u channel), it corresponds to the interchange of
particles d and 5 in the t-channel reaction db- ca. Thus in order to obtain symmetry under v- -v for the s-channel helicity amplitudes, here-
after denoted by G, we shall first look for sym-
metry under d —b in the t-channel helicity am-
plitudes, denoted by I'.

We find that such symmetry exists for the t-
channel helicity amplitudes in the following two
cases: (a} Particles d and b belong to the same
multiplet M of SU(2) (e.g. , pv'-b, "v', b =v', d
=+) or SU(3) (e.g. , PK -A'w', b K, d =v');
(b) particles Z and b belong to multiplets of SU(2)
or SU(3) connected by change conjugation C, and
particles c and a remain in their multiplets un-
der C (e.g. , v p-A, 'n, v p-K*'Z ). For both

cases the following symmetry holds for the t-
channel helicity amplitudes:

E~, ~~~, ~,'(t, v) =(- I)"&E~ „„~„'(t,—v), (1)
where i labels t-channel matrix elements re-
duced with respect to the internal symmetry
[SU(2) or SU(3}], $A) denote the helicities of the
particles in the t-channel, and (-1)"~ =+1 is a
phase independent of helicities.

For case (a), Eq. (1) follows immediately from
the statistics' and from the well-defined symme-
try g, of the irreducible representation M SM
labeled by i For case .(b) one uses G and C in-
variance to prove Eq. (1). Consider for exam-
ple, the t-channel reaction pvnOp (pure 1=1).
Using G parity and fermion anticommutation re-
lations one easily obtains Eq. (1) with g, =+1. A
similar proof holds for all other class-(b) reac-
tions in the SU(2) case. For b and d belonging to
SU(3) octets one proves Eq. (1}[with i denoting
the reduced amplitudes 1, 8„, 8 „8„,8„, ~(10
+ 10*), or 27] by applying statistics and G parity
to states of I=O in 8Q 8.

Whenever Eq. (1) holds in the physical region
of the t channel, we assume its validity for the
whole analyticity domain of E in v and t.

Let us now transform Eq. (1) from the t-chan-
nel helicity amplitudes E to the s-channel heli-
city amplitudes G, using the crossing relations
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