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Renormalized Critical Behavior or First-Order Phase Transitions?
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The exactly solvable Baker-Essam model for a compressible Ising lattice is re-exam-
ined. We find that, depending on the type of constraint imposed upon the system, the
second-order phase transition either gets renormalized or is changed into a first-order
transition. We resolve the apparent disagreement of this result with Fisher's renor-
malization theory by showing that, in fact, our result is typical of the correct state of
affairs to be expected on the basis of the general theory of critical points in systems
with hidden variables.

A great deal of controversy has occurred over
the effects of lattice compressibility on the criti-
cal point of a magnetic phase transition. Early
efforts at solving the case of a compressible
Ising model seemed to indicate that the magneto-
elastic interactions would invariably change the
second-order transition, observed at zero field
in the rigid Ising model, to a first-order transi-
tion. ' ' All these calculations are based on ap-
proximations and are thus open to serious doubts
for the reason that all known methods of approxi-
mation break down in the vicinity of the Ising
phase transition. Using a completely different
approach, Fisher has treated rigorously the gen-
eral problem of hidden variables and their effects
on a second-order phase transition. The com-
pressible Ising model is a special case of this
~he volume or pressure being the hidden vari-
able. His conclusion for this case is that for one
and only one type of constraint on the hidden vari-
able is the ideal Ising behavior retained, whereas
for all others it is "renormalized, " i.e., the crit-
ical-point exponents are changed in a specified
way. In no case does he obtain a first-order
phase transition. Following this, Essam and Ba-

~

ker' succeeded in solving an exactly solvable
special case of the compressible Ising model
which appeared to verify some of Fisher's gener-
al conclusions. In particular, no first-order
transition was found to occur. In contrast to this
we will first show that there exists a simple con-
straint on the system under which the transition
does become first order. ' Furthermore we will
show that rather than being in disagreement with
Fisher's general theory, ' this behavior is, in
fact, to be expected and that Fisher's conclusions
arose from an implicit assumption regarding the
type of constraints.

The suspicion that there might occur a first-
order transition in the Baker-Essam (BE) model'
arises from observing that the compressibility
that they calculate for it [Eq. (11) of BE]becomes
negative when the pressure is negative and when
the system is sufficiently close to thepoint of the
Ising phase transition. '"

To verify this suspicion we present an explicit
calculation as it appears for the two-dimensional
variant of BE. We perform our calculations in
the "A ensemble, " in which the partition sum is
given by

N ~2
= f ger, d~p, exp -pp ' -p g[y(e, , r, ,)+J(e,, r, ,)op, +he, , r, , ]~,i =1 i =g 2~ bonds

where, similar to BE,

9 (x) -=go + ~2ym(x —ao), J(x)-=Jo +J,(x —ao),

and A is a Lagrange multiplier introduced to determine the average interparticle separation a —= (x).
The sum over bonds includes all nearest-neighbor pairs of a two-dimensional square lattice.

By using the methods of BE, this can be calculated explicitly. The result is

2mm 2g QQ+ J2
lnZ Nln -2pK p, +Lao — ' +1nZ, (pJ,«),P Pe, (2)
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where Z, (P J,f,) is the usual Ising partition sum and

Z, pp-= J —Z, A/y, .
The average interparticle distance is given by

1 8 lnZa-=— =a, ————'((rp, ).
2JVp BA g cp

(4)

In order to determine the pressure, we first calculate the Helmholtz free energy F(T, V). To do this
we note that F(T, V) is numerically equal to the thermodynamic potential for T and a, F(T, a). This in
turn is obtained from the thermodynamic potential for T and A, namely, -k TlnZ, by a Legendre
transformation. We can thus write

F(T, V) =F(T, a) = —kTlnZ —2NgA.

From this, remembering that V =Na', we immediately find that

aF(T, V} sF(T, a) I
BV ea 2@a a '

(4a)

(5)

It is easy to see from (4) that a is alwasy a monotonic decreasing function of A. Therefore a given
value of a uniquely determines & and vice versa. This is not so when I' is given. The equation for ~
in that case is obtained by substituting (4} into (5) to get

(6)

In Fig. 1 we show schematic graphs of the two sides of this equation plotted as functions of &: The
left-hand side LHS is drawn for PZ~ small and positive. (Other values would cause a sideways shift of
the graph of the LHS. ) The RHS is a straight line with a slope determined by I/P for small P. Sever-
al appropriate straight lines are shown, and it is evident that for I' & 0 we can get only one solution to
Eq. (6). For P &0, we also ordinarily get only one solution, except when the intersection is close to
one of the Ising phase transition points —A.„or &~~n which case there are three solutions. To find
the stable one we should examine the Gibbs free energy,

G(T, P) =F(T, V) +PV =-kTI n(ZP, A) —2NaA+PV = —kTlnZ(tti, I}-NA'/P,

in order to determine when its value is smallest for given T and P.
Ordinarily, the Gibbs free-energy function is obtained when everywhere in this equation we substi-

tute A =A(P, P) as determined by Eq. (6). Since, however, P does not determine A uniquely, we will
continue to keep A on the RHS of (7) as a free parameter and use the new function thus obtained,

I'(T, P, A }=- - k T 1nZ(P, A ) -1VA'/P, (6}
to compare the values of G(T, P) obtained for the three solutions of Eq. (6). To this end we first cal-
culate the following derivative of I'

l'(sT, P, A}/sA =2K(a —A/P).

(lo)

middle one always corresponds to a value of G
that is greater than the other two; in fact, it is
not even a local minimum of G. Of the remaining
two intersections, the one that is near the larger
area enclosed between the two lines has the lower
G. This means that as we vary the pressure,
thus varying the slope of the straight line, the

The difference in G(T, P) between any two solutions of Eq. (6) that correspond to identical values of P
can now be obtained by integrating Eq. (9}:

QG(T, P) =I'(T, P, A ) —I (T, P, A ) =2Kf dg(~ —3/P),
where A„~, are two solutions corresponding to
the same P. The integral which appears in this
equation is equal to the area in Fig. 1 that is
bounded from below by the straight line, from
above by the wiggly line, and on the left and right
by the points of intersection & =A, and A =A, .
From this it is immediately clear that whenever
there are three intersections in the graph, the
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FIG. 1. Schematic drawing of the two sides of Eq. {6)
as functions of X. The wiggly line represents the LHS.
Each straight line represents the RHS for a definite
value of I'. A.,&, A~z are the two transition points of the
ideal Ising lattice, the ferromagnetic transition and
the antiferromagnetic transition. {%hich is which de-
pends on the sign of 4&.)

FIG. 2. Schematic drawing of the line of unconstrained
critical points A~ {T){solid line), the constrained equa-
tion of state A+{T) for the constraint a = c {dashed line),
and the constrained equation of state Az{T) for the con-
straint a =Ac {dotted-dashed line). At the crossing
point of A~ {T)and Az{ T) the curves have a common
tangent.

value of A that characterizes the stable equilibri-
um state makes a discontinuous jump when the
two enclosed areas become equal. A similar phe-
nomenon occurs if the temperature is varied
-=-this time because of a sideways shifting of the
wiggly graph.

We see that for P &0, the BE model has a first-
order transition with a discontinuous volume,
while for P ) 0, the second-order renormalized
transition is obtained as derived by BE.

These results appear to be consistent with a
recently published experimental result" in which
it was discovered that the so-called "A transition"
of NH~Cl is in fact a first-order transition at low
pressures, but then changes to a second-order
transition at high pressures.

We would like to note that the fate of the sec-
ond-order transition in the compressible lattice
depends crucially on the type of constraint that
is imposed upon it": At fixed P we have seen
that both renormalization and a first-order tran-
sition are possible results, depending on whether
P & 0 or P & 0." At fixed a, which also means
fixed volume, we always get renormalization. At
fixed A, as mell as at P =0, the system retains
its ideal behavior.

Since these results seem to disagree with Fish-
er's renormalization theory, ' and might be criti-
cized for pertaining to a very unphysical model
where negative P is possible, we will reconsider
that part of Fisher's arguments that is based on
Fig. 2 of his paper. ' The general constraint,
which we write in the form F(A, a, T) =c, is re-

placed in that figure by a =c, where a is a hidden
extensive variable (corresponding to Fisher's
variable x), A is the conjugate force (correspond-
ing to Fisher's variable g), c is a constant, and
F is a regular function. When that constraint is
substituted into the equation of state, a =a(&, T),
the solution A =A+(T) that is obtained is single
valued and has a unique intersection T, with the
line of critical points A, (T). But, contrary to
what Fisher implicitly assumes, this does not al-
ways occur. A case in point, suggested by our
treatment of the BE model, is the constraint
a =Ac. (There the constraint was a =3/P, but
here we are speaking in more general terms. ) In
this case, as well as in many others, the con-
strained equation of state Az(T) is not single val-
ued, but has the s-shaped form shown schemati-
cally in Fig. 2. It is possible to show that a first-
order transition then folloms with a general
equal-area rule.

We can summarize these considerations by say-
ing that the correct conclusion which should be
drawn from Fisher's very general and very beau-
tiful analysis is that when there is an extensive
hidden variable a and a conjugate force A, and if
under the constraint A =const there exists an
ideal second-order phase transition (i.e., one
with an infinite specific-heat anomaly), then un-
der any other constraint either the transition re-
mains second order but with renormalized criti-
cal exponents, or else it is changed into a first-
order phase transition.
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Experiments are reported which show that the electrical birefringence of the isotrop-
ic phase of two nematic liquid crystals depends on electrical conductivity. It is argued
that the conduction-induced alignment is due to local conduction anisotropy.

The alignment of nematic liquid crystals in elec-
tric fields is known to be strongly influenced by
electrical conduction. Simple dielectric align-
ment is often prevented by electrohydrodynamic
flow if the conductance of the sample is large
enough. There seems to be essentially two mech-
anisms of such flow. One operates in isotropic
and anisotropic liquids and requires injected
space charge. ' The other is based on conduction
anisotropy and is usually ascribed to an intrinsic
conductivity (but may also work with injected

charge). ' The second mechanism seems by defi-
nition restricted to liquid crystals. However, a
similar aligning effect appears possible in the
isotropic phase of nematogenic liquids at temper-
atures not too far above the clearing point.

If a liquid crystal is heated into the isotropic
state, the long-range order breaks down, but the
parallel ordering of the rodlike molecules is pre-
served on a smaller scale. The existence of
"swarms" of parallel molecules may be inferred,
for instance, from measurements of the bire-
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