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We show that the leading low-temperature behavior of the nth cluster coefficient b„can
be calculated without solving the n-body problem, and that there is a lnT term in the ex-
pansion. We illustrate these results particularly for the case of be.

Dashen, Ma, and Bernstein' have shown recent-
ly how to express the grand canonical potential
in terms of the S matrix. They obtain expres-
sions for the nth cluster coefficient b„ in terms
of energy integrals of traces of the S matrix
weighted by e ~s. For low temperatures (large
P =1/kT) these integrals are dominated by the
low-energy behavior of the scattering amplitude.
We have shown recently that this low-energy be-
havior can be obtained exactly for the n-body sys-
tem without solving the n-body problem. 2 In this
note we combine these two ideas to obtain explic-
itly the leading terms in the low-temperature ex-

pansion of the third cluster coefficient b, for
identical bosons. ' We show how higher terms
can be computed, and that there are lnT terms
among them. We also obtain the form of the lead-
ing low-temperature term for b„ in general.

We begin with the standard expression for the
grand canonical potential in terms of the cluster
coefficients b„':

pG=-ln Tre 8+ "+=-—~g b„e" &+pQ0,
rr -4

where & =(2wP/m)' ~ and 0, is the ideal-gas part
of . We use ~=2m =1. Dashen, Ma, and Bern-
stein have shown that

b -b ~~~=n'~ dEe 8 Im[Tr A—lnS(E)]n n
2m BE n c y (2)

where b„ is the nth cluster coefficient without interactions, Tr„means trace in the n-body space, A
instructs us to take that trace with respect to correctly symmetrized (or antisymmetrized) states,
and the subscript c on the right stands for connected; S(E) is the S matrix at energy E. Since the c is
not on the S, we must include states connected by the symmetrization as well as by the scattering it-
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self. It is a straightforward exercise in scattering theory to rewrite (2) as

ns/2 8b„-b„=— dE e Bs Re(Tr„A arc tan[wan(E -Ho)K(E)]], ,

where K is the K matrix, defined by

K =v +vP(E-Ho) iK (4)

In the three-body case there are two types of
connected contributions to the trace. There are
those connected only by statistics, of which Fig.
1(a) is the simplest example, and there are those
connected by the interactions. The leading low-
temperature contribution of Fig. 1(a) to b, is
- v 2a/A. Dashen, Ma, and Bernstein have shown

that terms such as in Fig. 1(a) may be considered
as statistics-generated corrections to b„and
they are automatically included in b, if b, is re-
defined so that the trace is carried out with the

(b)

where P stands for principal value. This trans-
formation to the K matrix removes some, but not
all, of the technical problems encountered by
Dashen and Ma associated with singular terms. '
For the two-body system of identical bosons at
low energies, the K matrix reduces to 16' (a is
the two-body scattering length). In expanding
arc tan[w5(E -H, )K(E)] in the two-body case (arc
tanx =x —~ x'+ ~ ~ ~ ), each intermediate integration
involves d'q 5(E —2q') which gives a factor of
E' ' on dimensional grounds. Hence we need only
keep arc tanx-x for small E. Applied to (3) this
gives the familiar low-temperature answer

b -b ' = —2a/A+O(I/~').

states weighted by the usual Fermi or Bose sta-
tistical weight. Hence we shall concentrate on
the contributions to b, coming from genuine
three-particle scatterings, such as Fig. 1(b). Let
us denote the sum of these contributions as 5,.

We have shown2 recently that the connected
three-body T matrix has the low-energy expan-
sion

A/E +B/E' '+C lnE +O(1), (6)

where A, B, and C contain only two-body scatter-
ing lengths and kinematical factors. For the K
matrix the arguments are even simpler, and the
expansion is still valid. A goes with the low-en-
ergy expansion of Fig. 1(b), B with 1(c), and C
with 1(d). A, B, and C are real and proportional
to a', a', and a, respectively. As in the two-
body case it is easy to see, essentially on dimen-
sional grounds, that the leading small-E term in
the arc tan comes from the linear term (arc tanx
-x), and that the leading term is then the A term
of (6). Using the explicit form of A gives the
leading low-temperature contribution to 5„

5, = loa'/x'+O(I/zs) (7)

This agrees with the result of Pais and Uhlen-
beck' obtained by a much more complex method,
and also with the A dependence of the perturbation
result of Larsen and Mascheroni. ' It also is
easily converted to give the hard-sphere result
of Lee and Yang' and serves as a proof of the
often-stated fact that the leading low-temperature
terms of the hard-sphere result. are valid in gen-
eral with the scattering length replacing the hard-
sphere radius. '

In evaluating the trace for (7) one encounters
the singular terms of the form

ff(x)&(x) P(1/x) dx;

FIG. 1. Lowest-order multiple- scattering three-body
diagram in the connected boson K matrix. (a) A term
connected only by symmetrization. (b)-(d) Terms con-
nected by scattering. These terms have different func-
tional forms and weights as perturbation of the labels
are assigned over them. In all cases the circles rep-
resent the off-shell two-body E matrix.

using the standard limiting procedure [e.g. ,
1/(x —ie) = P(1/x) +iw5(x)], this integral is easily
shown to be ,[df/dx)„, . The evalua—tion of higher
terms is rather complex because of the many
terms introduced by symmetrization, and we
have not been able to obtain an answer in closed
form although it is clear on dimensional grounds
that the next term goes like I/A. ' To get this
term one not only keeps the contribution of Fig.
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1(c) to the linear term in the arc tan but one
must also take the cubic term in the arc tan.
There is a connected term of precisely the same
geometry as Fig. 1(c) coming from the cube of
the disconnected or two-body parts of the K ma-
trix. Here, however, intermediate states get a
5(E -H, ) rather than a P[1/(E -Ho)]. It is impor-
tant to take these two terms together in order to
get a finite answer. All other terms are higher
order.

Putting the C term of Eq. (6) [Fig. 1(d)] in the
linearized arc tan makes a direct evaluation even
more difficult, but it is again clear on dimension-
al grounds that there will be a term in 5, of the
form A 41nk. It has been claimed that b„con-
tains only positive and negative integral powers
of A.." This does not seem to be the case.

It is clear from this analysis that terms beyond
A 41n& in 5, require a full solution of the three-
body problem since they involve terms of O(1) in
E in Eq. (6).

Turning to the n-body cluster coefficient b„,
there will again be terms connected by statistics,
which presumably can be summed into statistical
corrections to lower-order terms and terms con-
nected by scattering. It is easy to see that the
leading low-energy contribution to the n-body E
matrix goes as A/E" ' with A proportional to a" '.
ln Eq. (3) again the linear term in the arc tan
will dominate. Thus one finally gets as the lead-

ing low-temperature contribution to b„ from n-
body scattering a term proportional to (a/) )" '
(if there are no n-body bound states). There are
terms of higher order in 1/& and (1/X") ln'A. , but
one does not need solutions of the full n-body
problem until one gets to terms of order 1/A~" '.
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Evidence has been obtained for collision-free momentum transfer between the ions of
interstreaming plasmas in a laser-produced-plasma experiment. Diagnostics employed
included fast photography, shadowgraphy, and electric potential probes. Spectroscopy
provided direct evidence of momentum transfer from Doppler shifts of ion lines.

A high-density, high-temperature plasma is
produced when a Q-switched laser is focused on-
to a small solid target. Within a few nanosec-
onds the thermal energy of the plasma is con-
verted into kinetic energy of radial expansion. '
If a low-pressure ambient gas is present, then
radiation from the laser-produced plasma photo-
ionizes the gas and the laser-produced plasma
streams radially outward through the resulting
ambient plasma. We report observations of mo-

mentum-transfer interactions between iona of
the laser-produced plasma and ions of the am-
bient plasma under conditions where ordinary
binary momentum-transfer collisions are neg-
ligible.

Explanation of the momentum transfer requires
the existence of collective ion interactions (anom-
alous viscosity') associated with plasma instab8-
ities. The regime of our observations, C, & Y
&v, (where V is the ion streaming velocity, C,
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