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Satellites on 2p photoelectron spectra of transition-metal ions are shown to arise from
simultaneous outer-shell excitation. The coupling mechanism and selection rules are
discussed. Energies of the 3d-48 transition have been obtained for a number of difluor-
ides and oxides.

A systematic study of the 2P x-ray photoelec-
tron spectra' (XPS) of the 3d-group transition-
metal compounds has shown satellites due to the
simultaneous excitation of 3d-shell electrons.
The data give evidence for excitations within the
3d manifold as well as to higher-lying excited
states. The coupling mechanism responsible for
these excitations is closely related to that pro-
ducing "shakeoff" with P decay, or during K-
shell photoionization.

It is essential to distinguish between the two
common sources of structure on photoelectron
spectra': (a) multiplet coupling and (b) multi-
electron excitation. The former is due to the
coupling of the angular momentum (S and I., or
J) of the original atom or ion to that of the photo-
hole state. This effect is stronger the greater
the orbital overlap between the photohole and the
outer electrons. Multiplet splittings have been
observed for the 3s electrons of the transition
metals, ' and correspond fairly well to the re-
sults of Hartree- Fock calculations. The split-
ting of the 2s electrons of the transition metals
is expected to be considerably smaller.

In the independent-particle model, multielec-
tron excitations are not produced directly by the
incident photon but depend on coupling between
the electrons themselves. ' The most familiar
mechanism is the dipolar coupling responsible
for configuration interaction. It also depends on
orbital overlap between the photohole and the out-
er electrons of the ion. Such configuration-inter-
action satellites have been seen on the 3P elec-
trons of transition-metal ions" and the 3s elec-
trons of alkali-metal ions. ' In the former the in-
teraction is with states in which the 3p hole is
accompanied by a rearrangement within the 3d
shell; in the latter it is with states in which the
3s hole is replaced by two 3P holes plus an elec-
tron in an outer, normally empty orbital. '

These effects will be greatly reduced if the
original excitation is in an inner shell with small-
er principal quantum number than that of the out-
er electrons. In that case, however, a new cou-

pling mechanism may become important. It is
based on the change in the screened central po-
tential seen by the outer electrons when a core
electron is removed. "The excess energy of
the outer electrons due to the increase in the
screened ionic potential may be termed "relaxa-
tion energy. " In the adiabatic approximation this
energy is given to the ejected photoelectron.
When the adiabatic conditions are not satisfied
some of the energy may be used in producing
electronic excitations, particularly among the
outer electrons. Discrete excitations result in
discrete photoelectron satellites at greater ap-
parent binding energy. (Note, however, that the
final state due to this process may be indistin-
guishable from that produced by the normal con-
figuration- interaction process. ) Satellites pre-
sumably due to this mechanism and identifiable
with known optical excitation energies have re-
cently been reported in the XPS of 2P electrons
of Cu" salts by Novakov. "

The selection rules'" which determine the
final states accessible in monopole excitation
are AJ=O and ~~ =0 since there are no interac-
tions with the outside and no radiation emitted.
The relatively weak coupling to the inner-shell
hole is ignored, i.e., J does not include the angu-
lar momentum of the photohole. In the central-
potential approximation the additional selection
rules hi=0, ~, =0, b,m, =0, and hj=0 apply"

The data" for the difluorides of the transition
metals from Mn" to Zn", Fig. 1, exhibit satel-
lites and line-broadening effects which may be
qualitatively interpreted in this way. The data
show strong satellite structure for ions with al-
most-filled shells, i.e., for Cu", Ni", and
Co"; mainly 1ine broadening near the half-filled
shell, i.e., for Mn" and Fe"; and neither effect
for the filled shell in Zn". The resolved satel-
lites are believed to be due to 3d-4s excitation
while the line broadening is due in part to excita-
tions within the 3d manifold and in part to multi-
plet effects in the 2p shell.

To assess the magnitude of multiplet effects
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positions and those obtained from atomic energy
levels under the AJ=0 selection rule is as good
as can be expected in view of the above approxi-
mations.

The table shows significant differences in satel-
lite position for a given ion with change in ligand.
It is therefore clear that the shakeup satellites
reflect the crystal and ligand fields to which the
transition ion is exposed and make the normally
empty conduction-band structure accessible to
experiment. " These fields determine the posi-
tions and symmetries of the 3d levels and 4s-de-
rived conduction-band levels, and must account
for the noticeable difference in the satellite
structure of Cu" in CuSQ4, and CuF, . This de-
pendence of the satellite structure on the nature
of the ligands may be of considerable importance
in the XPS study of transition-metal ions in both
molecular complexes and other solids.

The line broadening which becomes the domi-
nant effect as one approaches the half-filled shell
is thought to arise not only from multiplet ef-
fects, but also from excitations within the 3d
manifold. For an almost-filled shell there may
be few or no b J=0 excitations, and hence no line
broadening from this mechanism. For a half-
filled shell such low-energy excitations may dom-
inate and may account for the reduced amplitude
of the 4s excitation satellite. " The absence of
broadening in certain compounds with partially
filled 3d shells, namely the strong-crystal-field
ferrocyanide and cobalticyanide complexes in
which the metal ions are in 'So states, is readily
explained. Since these ions are diamagnetic
there is no multiplet splitting. Furthermore,
the energy of the lowest-lying excitation within
the 3d band is sufficiently large, the cubic-crys-
tal-field splitting is = 4 eV, so that it will not
contribute to line broadening.

In the case of ZnF, no shakeup satellites were
detected. This may be attributed to the greater
energy gap between the filled 3d and empty con-
duction-band states than in the compounds with
partially filled shells. Shakeoff probabilities of
a few percent, "like those seen in inert gas
atoms, ' might not have been detected in these ex-
periments. The present data suggest that the
large shakeup effects in transition-metal com-
pounds are due to larger overlap of 3d and con-
duction-band wave functions than that calculated
from atomic wave functions.

Finally, one naturally expects shakeup satel-
lites on the 2s XPS line. These, however, are
generally difficult to see because the 2s lines are

considerably broadened (up to 5 eV) by Coster-
Kronig processes. We have seen unambiguous
evidence of shakeup satellites only on the 2s
line of Cu" in CuF, where the satellite separa-
tion is large, and of the same size on both the
2p and 2s spectra.

We are indebted to L. R. Walker for helpful
discussions, to M. Robbins for a supply of CuF»
and to D. N. E. Buchanan for assistance with the
measurements. We would like to thank T. Nova-
kov for a preprint of Ref. 10.
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