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The transition from the correlated pionization region to the uncorrelated pionization region occurs
when s,~s», =—~M' as s-,z is increased. This allows us to define the "correlation length": As ~ is
increased by increasing the longitudinal momenta with the transverse momenta fixed, the two particles
become uncorrelated when a value of the invariant mass s~ is reached such that (p, +p, )'«~. By
making use of the experimental average value of P for the pion distributions, i.e. , (P ) = 300-500 MeV,
we estimate then that the two particles are correlated as long as the invariant mass is not significantly
larger than 1 BeV.

For the case in which s~ is increased by increasing P, and P, along arbitrary directions in the
transverse plane with P, and P, fixed, we find that the two particles are always correlated and the dis-
tribution is a function of cosy =P, P, , which shows a cutoff in the form

f„"-exp(-4[P,'+P, "+2p, p, cos2&+p, p, (1-cosy)ln tangly]}. (16)

Vhe details of this paper and other related topics will be discussed elsewhere.
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We ex~&re the large-order behavior of perturbation theory for the anharmonic oscil-
lator, a simple quantum-field-theory model. New analytical techniques are exhibited
and used to derive formulas giving the precise rate of divergence of perturbation theory
for all energy levels of the x2+ oscillator. We compute higher-order corrections to
these formulas for the x oscillator with and without Wick ordering.

A Rayleigh-SchrMinger perturbation series is a power series QA„A.", where x is the coupling con-
stant, n is the order of perturbation theory, and A„is a Rayleigh-SchrMinger coefficient. %e are
concerned here with the Rayleigh-Schrlinger coefficients in the perturbation expansions of the ener-
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gy levels of the Nth anharmonic oscillator, which is defined by the equations

[-d'/dx'+-, 'x'+m'"2 "-E(x)]/t(x) =0,

lim P(x) =0.
IxI

(»)
(Ib)

In this Letter we give formulas describing the large-n behavior of A„.
More precisely, we express the perturbation expansion of E '"(A.), the Kth energy level of the Nth

anharmonic oscillator [Ex' (x)-K+-,' as a-0 along the positive real a axis], as

E'"(i)-K+ 2 + Q A„""A.".
n ].

We derive here the remarkable result that for n- ~,

(N —1)2x(-1)"+', I'(2N/(N —1))
v»'K! 2" " "+ + ' I'(N/(N 1))

1+0

(2)

(3)

In addition, for the ground-state energy of the x' oscillator (K=0, N = 2}, we compute the first-order
correction to Eq. (3):

0 2
( I)FI + lp 3/261/23tt P(n + ~) [1 95 ~ 1 + 0(n 2)]

At the end of this Letter we give similar formu-
las [see Eqs. (17) and (18)] for the Wick-ordered
N = 2 oscillator. We feel that the derivations of
these results constitute a significant contribution
to the study of singular perturbation theory.

Much of the recent intensive interest in the na-
ture of singular perturbation theory was generat-
ed by the discovery' that the Feynman perturba-
tion expansions of the (p'"), quantum field theory
diverge. The anharmonic oscillator [which is a
(y'"), quantum field theory'] has served as a
good model for research on this topic because
its perturbation series are also divergent, as is
evident from Eq. (3).' Early investigations of
the anharmonic oscillator' were concerned with
elucidating and interpreting the singularities in
the complex A. plane which cause the divergence
of the power series in Eq. (2). Other work"
was also concerned with summability methods
[techniques which recover the eigenvalues from
the A„'"and thus, in effect, "sum" the diver-
gent series in Eq. (2}]. The results of this paper
have an immediate application in summability
theory. Estimates of the growth of the A„~'"are
used to prove that the approximants converge to
the correct limits. "

Aside from the results, the new analytical tech-
niques we shall introduce here, while not entire-
ly rigorous, are of interest themselves. We give
below two independent derivations of our results.
The first derivation employs WEB techniques and
establishes the first computational connection be-
tween the real- and complex-A. dependence of the
energy levels. The second derivation introduces
new methods for approximating the difference

equations which generate the A„'.
Derivation 1.—Two rigorous properties of the

eigenvalues of the anharmonic oscillator are that
for large Ial, IE"'"(A.)i- lal' t"' ", and that
Ex'"(X) is analytic in the cut A. plane with the cut
extending along the real axis from —~ to the ori-
gin. The first property is a direct consequence
of the Symanzik transformation. ' The second is
a deep result obtained by Loeffel and Martin. '
These properties imply that Fx'"(x) —= X '[E» "(a)
—K —x~] satisfies

»m IF"(&)I
= 0,

jr'
lim f~"'())]=0,

I) I--

(5a)

(5b)

and F '"(i) is analytic in the same cut x plane as
E"'"(A.). It follows from Eqs. (5) and the analy-
ticity properties of F~'"(A) that Fx'"(i) obeys the
dispersion relation

F"(~)=(2vi) 'J (x-~) 'D" "(x)dx,

where

D ' (i) = lim[F ' (x+ie) —Fx'"(x —ie)].~ 0

Next, we insert the relation

(6)

(x —X) '=Qix "'
n~0

into Eq. (6) and obtain the asymptotic series in
Eq. (2) by interchanging orders of integration
and summation. The expression for the Bayleigh-
Schrodinger coefficients is thus

0A„"=(2»)'j dxx "D"'(x) (7)
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The result in Eq. (7) is exact because the inte-
gral exists. ' Moreover, for large n the contribu-
tion to this integral comes from a small region
near x =0. Thus, to complete this derivation, it
is sufficient to compute (approximately) the ana-
lytic continuation of the energy levels to small
and negative A. . It is natural to accomplish this
task using WKB theory. Indeed, zeroth-order
WKB theory gives the leading behavior in Eq. (3),
first-order WKB theory gives the first-order
correction in Eq. (4), and so on.

However, determining E(A) from a WKB analy-
sis requires extreme care because one is con-
fronted with the problem of subdominanc. In
our previous work' the secular equation for the
energy levels (an implicit relation between E and
X) appears as a consistency condition when we
perform asymptotic connections of approxima-
tions to the wave function g(x) in various regions
in complex x space. Ordinarily, since one can-
not unambiguously connect suMominant (that is,
exponentially small) terms in the asymptotic ex-

pansions, the resulting secular equation is mean-
ingless. (Fortunately, in Ref. 4, where argA
=270' for the x' oscillator, the asymptotic con-
nections are made on Stokes lines, along which
one does not distinguish between dominant and
subdominant terms in the asymptotic expansions;
both terms are oscillatory and do not grow or de-
cay exponentially. ) In the present problem,
where arg1 =180, we successfully avoid the
problems of subdominance by decomposing Eq.
(la) into real and imaginary equations. This sep-
aration prevents dominant terms from eclipsing
exponentially small but important terms. In ad-
dition, this separation helps to clarify the bound-
ary conditions at Ix I = ~. When A. is negative,
g(x) oscillates at Ix I

= ~. Without decomposing
Eq. (la) into real and imaginary parts, it would
be difficult to tell which linear combination of
outgoing and incoming waves to use.

The details of this rather involved calculation
will be presented elsewhere. '" The results of
zeroth-order WEB theory are

2i2 v'", &,„,~t&„,~ —I'(N/(N —I))
g1 rf2N/(N I))(- -'-x)' " '

Inserting this formula into Eq. (V) gives Eq. (3). Eq. (4) is obtained from first-order WKB theory.
Derivation &.—We limit this discussion to the expansion of Eo'2(A). Let

E"(X)=-,' —Q (- x)"C„,
n=1

OO 2n

4(x) =exp(- -'x')[1+ Z (-&)" Z (-.'x')'C„,,].n= 1

Substituting Eq. (9) into Eq. (1) gives the exact equation
n-1

2jC„,=(j +1)(2j+1)C„,„+C„.. .—Q C»C„~,,
P= 1

(9b)

(10)

where C„=C„,and C, ,=l. Using Eq. (10) we de-
termine the behavior of C„for large n by making
a series of approximations.

Approxi mati on A: successive linearization.—C„jis positive for all n and j. Thus, in Eq.
(10) the summation is small compared with the
first two terms on the right-hand side. To find
the leading growth of C„(zeroth order) we ne-
glect the sum. To find the first-order [O(n ')]
correction we retain one term & p = I) and insert
the numerical value for C, , For the Jth order
[O(n ~)] correction we retain the first J terms
in the sum and replace Cp 1 by its numerical val-
ue. This gives an infinite sequence of linear
equations which we claim give successive correc-
tions to the asymptotic growth of C„,. This

r claim is borne out by computer to 150th order in
perturbation theory. From here on we consider
only the zeroth-order calculation.

Approximation B.—Let C„,=D„&/jI'(j+2).
D„,obeys D„,=D„,+,+[~j-—,'(j —2.)]D„,z „

D» = &We. Computer calculations verify that for

& Cn j„.We thus can approximate this equation
by

n j n j+1 ~a n-1 j-p'

The initial condition is determined by requiring
that

lim E„,„/D„,„=l.
n~ o
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If we choose Ep p 1 then as n- ~,

C„,=21t2« 'E„,
The generating functions

E(x) = Q E„,x" '/(n —I)!
n «1

n )+2E
)=ZZ

n,j «1

(12)

transform Eq. (11) into

—+2y'(I-y) '—=y'(y —I) '[y'-E] (13)
~x Bg

It is remarkable that we can solve this equation
even though it contains two unknowns, G and E.
The change of variable $ =y ' —«y ', y =g, 2($)
brings Eq. (13) into a standard form whose solu-
tion is

G, ,(x, &) = dx' ",[E(x') -g, ,'(( —x+x')].g, 2'($ -x+x')
p 1,2

(14)

The subscripts 1 or 2 occur because for y &0, $(y) has a two-valued inverse g»(g). But g, ($) =g2(f)
when $ =-,'. Thus G, (x, —,') = G,(x, —,'), which eliminates G and gives an integral equation from which we

determine the dominant behavior of E(x):

E(x) --'(2-x) '"+O((2-x) '") (15)

Approximation C.—Equation (15) implies that for large n, E„,-3"+'~2I'(n+ 2)/2&«. This result and

Eq. (12) combine to give Eq. (3) (in which K=O and N=2).
Generalizing this derivation to nonzero values of K while keeping N = 2 is relatively easy. However,

values of N&2 give a complicated (N —1)-order partial differential equation in place of Eq. (13). Nev-
ertheless, we have been able to recover all of the features of Eq. (3) except for the multiplicative con-
stant term (independent of n).

8'ick ordering. —The energy levels of the anharmonic oscillator are expressible in terms of Feyn-
man diagrams. For Kc0, E '"(A.) is the K-particle pole of the 2K-point Green's function. The ground-
state energy E'"(X) is the sum of all connected diagrams having no external legs.

Wick ordering a quantum field theory excludes those Feynman diagrams in which a line emerges
from and returns to the same vertex. Wick ordering is necessary when the space-time dimension is
two or greater because such diagrams are divergent. The anharmonic oscillator is a field theory in
one-dimensional space-time Rnd does not require Wick ordering. Nevertheless, our results for the
Wick-ordered perturbation series are interesting enough to warrant presentation here.

We consider only the N = 2 Wick-ordered oscillator, which is described by Eq. (1b) and the differen-
tial equation'

[-d'/dx' ——,'+ —,'2+ (4 ——2X)x'+ —,'Ax' —e(X) ]!!1(x)= 0.

The perturbation expansion of the Kth energy level, e«'(A. ), takes the form

e«'(X)-K+ Q «."a„".
n «].

Equations (3) and (4) and lengthy algebra give

!im A „«'/a„"' = e' = 20.085 537. ~ ~,
n~~

1im (A„'/a „')= e ' [1 —n ' —
~~ n ' + 0(n 2) ] .

(16)

(17)

(18)

Theory versus computer calculations. —By iterating difference equations such as Eq. (10) on a com-
Pute r we hRv e cRlculRted exRctly A I gp A I 5p A y 5p A 75 and a„",and find sPectacular agree-
ment with our predictions. We conclude with two such comparisons: A»,"(computer) =7.5188103011
x10"'; Eq (4) pred. icts A»,o'=7.519480X10222; A„"/a„"(computer)=19.80655; Eq (18) predic. ts
A7 ' /a ' =19.80784.
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