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We present the results on the two-particle production cross section for the process a+b
+f ++2 + anything at high energy predicted by the dual-resonance model. The distribution

functions for all the kinematic regions are shown to have the desired variable dependence
and properties. In particular, we find that the two-particle "correlation length" is of the
order of 1 GeV '.

We would like to present in this paper the analy-
sis of two-particle productions in high-energy in-
clusive hadronic reactions

+ab
t~o3w A3w J a3 1 a &M 3s apt ) (4)

can be evaluated from the discontinuity of B, in
M'. Here s„=(P,+P,)', s;, = (P, +P-, )', etc. de-
note the independent variables. These variables
appear through trajectory functions via the rela-
tions & ah sah+ Q b A

y
s g+ Q T etc. The expres-

a+ 5 —x, +x, + anything,

within the framework of the dual-resonance mod-
el. Single-particle distributions in such context
have been studied previously. ' '

Following Mueller, "we relate the cross sec-
tion for the process (1) to a discontinuity in the
missing-mass variable

M' = (p, +p3+Q+pZ)3

of the standard eight-line dual amplitude (which
we denote as 83)' for the process (see Fig. 1)

a+ 5+1', +x2 —)I+5+x, +x2.

Then the distribution functions f„"defined by
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FIG. 1. The generalized optical theorem to relate
the inclusive cross sections with disc„tg.

sion (4) is the number density for particles x, and
x„and it is this formula that is conjectured to
approach the limiting distributions' or the scaling
limits' at high energies. The work of Mueller'
suggests that a single leading Regge-pole exchange
is sufficient to explain such limiting behavior.
The dual-resonance model has the desired Regge
behavior and was successful for the qualitative
understanding of the single-particle distribution. "
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Although there are 2(8 —1) '- distinct diagrams
for 8» only ~ && 4.'~ 4-' of them, having a, X„X„
and b adjacent, contribute to the discontinuity in
M'. Furthermore, because of the symmetry
property of the dual amplitude noticed by Plahte, '
we can reduce, following the same procedure as
that of Ref. 1, the number of diagrams contribut-
ing to the discontinuity in M . By adopting simi-
lar phase conventions as those of Ref. 1 for the
asymptotic limit along rays in complex Mandel-
stam variables, it is sufficient, for our present
purpose, to study only the single diagram (; P, P, ,)
(see Fig. 1). It should be remarked that this
phase convention is reminiscent of any interpreta-
tion of the asymptotic behavior of the four-point
dual amplitude at fixed momentum transfer or
scattering angle and was shown in Ref. 1 to lead
to the Mueller analysis of inclusive reactions.

The identification of (4) with the discontinuity
of B, in M', or in o.' =M'+o.'(0), requires an ana-
lytic continuation in o. while holding all other in-
variant variables at certain prescribed locations. '
Starting with the purely real integral representa-
tion for 8, in which all the invariant variables
are held below their lowest singularities, we
first continue e to the region above its normal
threshold and obtain the discontinuity in n by sim-
ply calculating the imaginary part. We then con-
tinue the variables o.,» o.'„» n, ~, and o~ (o;;,
o.,—;„o.;;„and n») in the discontinuity formula
back to their physical region with the + ie (- ie)
prescription. The remaining invariant variables
are all of the "crossed" type to M' and therefore
do not give rise to singularities in the discontinu-
ity. In this way, we can avoid the danger of en-
closing any unwanted singularities in the analytic
continuation. We note that all the invariant vari-
ables are to be treated as independent in obtain-
ing the discontinuity which can be accomplished
by treating the general nonforward limit first;
and that any asymptotic kinematical constraint

Xi X2 b x, x, b

x) x~ b 0 X, Xq b

(a) (b)

Xi X

x,
(c)

X2

b Xi
Xi Xg

(a) (e)

FEG. 4. Hegge asymptotic limits (a) through (e) as
discussed in the text for two-particle production.

Xg

among the variables which may exist should not
be invoked before the discontinuity is taken.

We discuss the two-particle distribution func-
tions' in the kinematical regions of the single and
double fragmentations, the correlated and uncor-
related pionizations, and the ditriple Regge limit,
when s„-+~+ie, s;~ -+~ —ie, and M'-+~+iE.

(1) The single fragmentation of b. This is the
region [see Fig. 2(a)] in which the momenta of x,
and x, are fixed in the rest frame of b so that s,~——~ with s~, s,~, s„/M'=—1 —s,~/M', and

tt"-y
sgy 1

w q Ey+PP
E, -P, "

fixed. We obtain

f,"(P„P,) = (M'/s. ,)" R,(P„P,),
where R,(P„P,) is given by a fourfold integral
evaluated in the rest frame of b.

(2) The double fragmentation region. Here, the
momentum of, say x, is fixed in the rest frame
of a and that of x, in the rest frame of b, while~—+~+i~ and s» —+~ —i& with s,~, s,„s;„
s» and s„/M' fixed [see Fig. 2(b)], so that

/ / /sit~ sp&~/M s~ = sfIz~ s pz~f ™iI p~&
—sp~] s&zgy/M spy&&

We find in the c.m. system of a and b that

f.a"(Pi, P. ~) s=f.'(0, ', 0, /&&.g)f~'(p. ', p, '/~&. g),

where

E ~ v CX
- 0(—

'0 E, +

R,' being the twofold integral in Eq. (3.3) of Ref. 1 for the process a+target-x, +anything. " n„de-
notes o.„-„,the dominating trajectory for describing the total cross section.

(6)

(6)
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Note that (7) has the desired factorization property and that (7) and (8) are functions of the scaled
c.m. or Feynman variables (P, ,P, "//s„, P, ', P, '/Zs, „).

(3}The ditriple region. This is achieved when s~, s», s„/M', and M' are all large with s,I, sz,
s~, and s» fixed [see Fig. 2(c)]. Then both s,»/M' and s»~/M' tend to —~. By taking these limits in

(7), we find

12 bi% bI r aT% a&2 I 12 (9)

where

h„"=h, '(p, ',p, "/v's, „)h,'(P, ',P, "/Zs„),

h, ' = I'(- n,—,)I'(- n, —,)I'(1+n„)/I'(- n,—,—n, —, + n„+ 1).

Note that (11) is precisely the triple-Regge vertex one obtains for the production of x, in inclusive
collisions, and that (9) is simply a product of two such triple-Regge expressions. "

(4} The uncorrelated pionization region. This region corresponds to s,~, s,z- —~, and s~-+ ~, with
s„/M' fixed so that

s,~s~~/M =—m, +(0, )', s~&s,&/M
=—m2 +(p2 )',

and s,~s,~/M's~=—1 [see Fig. 2(e)]. The distribution function has the correct factorization property
and depends only onP, and P, :

where f (P, ) is the single-particle distribution function in the pionization region, i.e. , Eq. (3.7) of
Ref. 1. In particular, it behaves as (P, )'- ~ like

(13)

Note that the distribution function (12) has the exponential cutoff in transverse momenta of the form
exp[- 4(P, ")']exp[- 4(P, )']. We add that this region can also be reached smoothly from the double-
fragmentation region: The transition is analogous to that between the fragmentation region and the cen-
tral region in the six-point function.

(5) The correlated pionization region. This situation is reached when x, and x, are produced with a
fixed invariant mass s~ at high energies [see Fig. 2(d)]. We then have s„/M'= 1 and

s,~son/M's~=—1+ (p, '+p, ')'/s~,

while s,~, sb~- —~. The distribution function turns out to be"

f 6 = (naxn52/nab) "Ry2(nTK~~t ~@2 ~Pl 'p2 (14)

where R» is given by a threefold integral.
It is clear that the momenta x, and x, must be parallel to each other as E, and E, are increased with~ fixed. If we consider the p, ',p, " —~ limit, say with the choice of direction p, p;=pbp;", while

keeping n~ fixed, (14) approaches gradually the limit n,z- —~ of the single fragmentation case (5).
On the other hand, for fixed n~, as p, and p,

' are increased (then, of course, p, ~ p, =p, p, '-~),
(14}shows a remarkable cutoff in the transverse momentum of q =p, +p:

f„"- exp[- 4y. (~y. +~y, )']= exp (- 4 q '), (15)
where y„=s;,s;,/M', y, =s;»/s,-,—1, and yb--s», /s Il. In either case, we find that the two particles
behave like a single particle as E, and E, are increased so long as s~ is fixed.

As s~ is allowed to increase, however, the two particles x, and x, no longer have to come out with
parallel momenta. Consider the case in which E, and E, are increased by increasing the longitudinal
momenta but with the transverse momenta fixed. To allow ~ to increase would imply that the two lon-
gitudinal momenta are antiparallel to each other so that, say, x, approaches a while x, approaches b.
Then (14}goes over smoothly to the factorized distribution function of the uncorrelated pionization re-
gion (12), thus showing the exponential cutoff in each transverse momentum.
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The transition from the correlated pionization region to the uncorrelated pionization region occurs
when s,~s», =—~M' as s-,z is increased. This allows us to define the "correlation length": As ~ is
increased by increasing the longitudinal momenta with the transverse momenta fixed, the two particles
become uncorrelated when a value of the invariant mass s~ is reached such that (p, +p, )'«~. By
making use of the experimental average value of P for the pion distributions, i.e. , (P ) = 300-500 MeV,
we estimate then that the two particles are correlated as long as the invariant mass is not significantly
larger than 1 BeV.

For the case in which s~ is increased by increasing P, and P, along arbitrary directions in the
transverse plane with P, and P, fixed, we find that the two particles are always correlated and the dis-
tribution is a function of cosy =P, P, , which shows a cutoff in the form

f„"-exp(-4[P, '+P, "+2p, p, cos2&+p, p, (1-cosy)ln tangly]}. (16)

Vhe details of this paper and other related topics will be discussed elsewhere.
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We ex~&re the large-order behavior of perturbation theory for the anharmonic oscil-
lator, a simple quantum-field-theory model. New analytical techniques are exhibited
and used to derive formulas giving the precise rate of divergence of perturbation theory
for all energy levels of the x2+ oscillator. We compute higher-order corrections to
these formulas for the x oscillator with and without Wick ordering.

A Rayleigh-SchrMinger perturbation series is a power series QA„A.", where x is the coupling con-
stant, n is the order of perturbation theory, and A„ is a Rayleigh-SchrMinger coefficient. %e are
concerned here with the Rayleigh-Schrlinger coefficients in the perturbation expansions of the ener-
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