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It is shown that if the chiral SU(3) SU(3) and scale-invariant limits coincide, chiral-
symmetry breaking by (3, 3*) (3*,3) terms provide a consistent description incorporat-
ing the results of Cheng and Dashen and of Gell-Mann, Oakes, and Renner.

In this note we discuss the implications of the
recent result of Cheng and Dashen' within the
context of the (~3 3")$ (3*,3)-breaking model" of
SU(3)8 SU(3) symmetry.

Consider, to start with, the usua13' (~3 3*)
$(3~, 3) breaking model of SU(3)SSU(3),

H =JIo + eoSO + & SB„e,/e =oc,

where S, (i =0, 1, ~ ~ ~, 8) is the nonet of scalar
densities which, together with an appropriate
nonet of pseudoscalar densities, transforms as
the (~33*)$(3~, 3) representation of SU(3)8SU(3).
The success of current algebra suggests that Hp,
which is SU(3)8SU(3) invariant, describes a
world containing a massless octet of pseudoscalar
mesons. Also if SU(3)SSU(3) is a reasonable
symmetry of nature, one expects that in the sym-
metry limit other quantities, like masses of bar-
yons, coupling constants, etc. , do not change ap-
preciably from their physical values. However,
the result of Cheng and Dashen' shows the con-
trary. For the value c = —1.25 obtained by Gell-
Mann, Oakes, and Renner' (GMOR), this result
indicates that the mass of the nucleon is drasti-
cally altered4 in the SU(3)SSU(3)-symmetric
world, so that the physical masses of the bar-
yons' seem to arise predominantly from the sym-
metry-breaking terms in (1). This result intro-
duces serious problems. Consider as an exam-
ple the usual or generalized Goldberger- Treiman
relations which are exact consequences in the
SU(3)S SU(3)-symmetric world. If these rela-
tions are approximately valid in nature, clearly
a drastic change in the baryon mass must be
compensated by an equally remarkable change in
one or more of the coupling parameters that en-
ter these relations. The approximate experimen-
tal validity of Goldberger- Treiman relations
would thus be quite accidental. Note that an ad
hoc change in the value of c is not an ac'ceptable
solution, since this would upset the pseudoscalar-
meson masses, according to the analysis of
GMOR.

A way out' of the paradox is the proposition
that the SU(3)@SU(3)-symmetric limit coincides

with. the limit of scale invariance realized through
the massless dilaton o. This possibility was
raised by Gell-Mann' and has been studied by
several authors. Within the framework of the

(3, 3*)$(3*,3) model, we suggest that this is the
only simple way out. Instead of (1), we may ac-
cordingly consider the following model' for the
energy-momentum tensor.

8„=8„+5+eS, (2)

where 0~ is chiral and scale invariant, 5 is
chiral invariant but breaks scale invariance, and
E'S E'pSp + &p$8 breaks both chiral and scale sym-
metries, and will be assumed to have a unique
dimension d. We shall also take 5 to be a c-num-
ber. For (2), one obtains the virial theorem

—8»= (4 —d) eS + 45.

Note that from Lorentz invariance, since (OI8„&IO)
=0, we get 45 =(d —4)(OI~SIO), so that 5-0 as &

-0. Thus ~-0 leads to the combined SU(3)
@SU(3)- and scale-invariant limit. As mentioned
before we have assumed that in this limit the
pseudoscalar mesons as well as the scalar dila-
ton are massless.

Using the normalization (PI —8»IP) =M/V,
where M is the mass of the baryon described by
the state IP) at rest, one finds for the nucleon

I„/V =(4-d)(pl. Slp&,.
Now as stated, the result of Cheng and Dashen
for the model (1) suggests that the entire mass
of the nucleon arises from the symmetry-break-
ing terms in (1), i.e., N„/V = (pIcSIp), if c is
close to the GMOR value. Within the framework
of the model (2), this then implies' that d =3.
More significantly, however, the result of Cheng
and Dashen can now be reinterpreted for model
(2) as follows. For the model (1), the Cheng-
Dashen result implies a vanishing nucleon mass
in the symmetry limit &-0, which leads to the
difficulties mentioned above. However, for the
model (2) M„(e-0)v0. To see how this arises
note that the matrix element (P 'IeSIP) will have a
o-pole term ~ e/(t —m,~), where t =- (p -p ') .
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2m' =(4 —d)(2p, v)&pl»sip&, „„, (8)

where we have used the normalization (2PDV)
x &PI- tI»IP) =2m2 for the meson state IP) of mass
m. We first show that if we use SU(3) paramet-
rization for the full matrix element in Eq. (8),
we reproduce the GMOR results but for d =2.
Thus if we assume

(4p,e,v')'" &p,.(q)I s, (o) ls', (p)&,

=a(t)5. 5,, +P(t)d, ,,
for i, k =1, ~ ~ ~ 8, and j =0 1 ~ ~ ~, 8, we obtain
from Eq. (8)

(9)

(m.'- m. ') =- (4- d)(~3/4) P(o) ~,. (lo)

From (4), it is clear that M„will then have a
contribution ~ e/m, ' which will be finite for» -0
if m, ' =0(»). Thus if SU(3)@SU(3)- and scale-
invariant limits are coincident as in the model

(2), in general M„(e -0) to. The importance of
the 0-pole terms was first pointed out and dis-
cussed by Ellis. Clearly the combined symme-
try limit (e-0}would make sense if the o-pole
contribution, i.e., M„(»-0}, nearly accounts for
the entire nucleon mass, leaving the rest of &-

dependent terms as a small perturbation. It is
easy to show from Eq. (4) that this implies"

M „(e- 0) =f,G«„,™„,
where the coupling constants f, are defined
through the following matrix element:

&ol~„.(o)l o(k)& =-.'(2k, v) '"
xf,(m, '5 „,+k „k„), (6)

and 6», is the MVa coupling constant. Note that
the a'-pole term in Eq. (5) does not depend explic-
itly on the scale dimension d. However the value
d =3 is the preferred one, if as mentioned c is
close to the GMOR value. One is then led to
question if c for the model (2) is still given by
the GMOR value. This is not a Priori evident
since one has to keep track of the a-pole terms.
To settle this question, we now turn our attention
to the masses of pseudoscalar mesons in the
model (2).

It has been pointed out" that the pseudoscalar-
meson mass formula

m' =(2P,V)&PI~SIP&

used by GMOR for the model (1) is not generally
valid for the model (2). For the model (2) the
appropriate relation is instead obtained from
Eq. (3}:

Also, note that if we consider the K» matrix ele-
ment

(4p.e.v')'™&"(~}tv„' "(0)IK'(p)&

=-'~2[(P+e)g, (t) (P-~)P (t)),

we get for the matrix element of the divergence

(4P~,V')'" &v'(e)ls„v„» "(0)IK'(P)&

=2v 2d(t) (12)

with

d(t) =(m« -m, m)F, (t)+tF (t).

Now using" s„v„» "=——,'v 3 ~,s» '», we obtain
from Eqs. (12) and (9) the result

d(0) =m«'-m„'=- 2&3P—(0)e„ (13)

where in the first equation in (13) we have used
F,(0) =1, the SU(3) value. Note that Eqs. (13)
and (10) imply that d =2, so that the mass formu-
la (8) reduces to (7), and the analysis of GMOR
goes through unaltered. The result d =2 however
contradicts the previous result, d =3. The diffi-
culty lies in the SU(3) parametrization in Eq. (9).
Indeed, because of the existence of the low-lying
o pole, one may expect some distortions in the
SU(3) result (9) near t =0.

Explicitly calculating the a-pole contribution to
the matrix element in Eq. (8), we then obtain

2m„' =f G,„, +(4-d)(2p V0) &vl»six)„&, (14)

2m«~ =f G,««+(4 d)(2pa-v)&Kles IK), p. , (15).

where the suffix n.p. denotes no 0 pole. If we
neglect all the n.p. terms and retain only the o-
pole contributions, Eqs. (14) and (15) reduce to
the usual consequences of partial conservation
of dilatation current (PCDC)." Carruthers" has
suggested that the PCDC result for mesons .

should be abandoned. The reason for this in the
present approach is quite transparent. Note that
whereas the o terms for the baryon mass [see
Eq. (5)] are of order unity in the limit »-0, the
corresponding cr terms in Eqs. (14) and (15) are
of order ~. This is because 6,„,and 6 «van-
ish in the combined symmetry limit when pions,
kaons, and the o' are massless. In fact applying
the hypotheses of partial conservation of axial-
vector current to the matrix elements &«IA„"le)
and &KIA „«kr), one obtains" G,„„~m, ' -m„' and
6 «fx:m -m~'. Thus whereas the o pole in-
deed dominates for the baryon masses, it gives
a contribution of the same order as the n.p.
terms for mesons.
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Having extracted the a' contributions explicitly,
we may now parametrize the n.p. matrix ele-
ments using SU(3). Using Eq. (9) only for the
nonpole terms this time, and using the same
symbols for economy, we then obtain

2m„' =f,G,„„+(4-d)(y~,+ pe, -v 3),

2m»2 =f G ««+ (4 - d) (yeo - ~6W3 pe },

y=& +& 2/3p.

(16)

Note that, since the E„matrix element in Eq.
(12}gets no contribution from the v pole, Eq.
(13) is still valid. From the foregoing analysis,
we may also express

f~G ~ «» —c»(m ~
—m «)

(18)

where

4 „=c„-4(4-4)( )„" (19)

1 C~ —C„
(p =c ——'(4-d) ———'E E 3 a 2 d -2+c~

with

(20)

&44

/ (21}

Note that a = c/W2, where c is the GMOR param-
eter in Eq. (1}. For a= -1, the model (2) is
SU(2) SU(2} invariant, ' but not scale invariant.
Thus at a = -1, we may require m, '-0 with
m '0. Similarly at a= 2 we realize chimeral
SU(3) symmetry" without scale invariance, so
that we require m„'-0 at a=2 with m,240.
These conditions give

y„(a= —1)=q, (a=2)=0. (22)

If we assume that d, 5, c„, and c~ do not depend—at least do not depend sensitively —on a, we
obtain from Eq. (18)—(20) and (22) the mass for-
mulas

c„(1+a)
(d —2)a+ c„(1+a)

2= c (2-a} 2

[3c„—2(2 —d)]a+ c„(2—a)

(23)

where c, and c~ are proportionality constants
which can be shown" in general to be of order
unity. Using Eqs. (16) with (13) and (17), we can
now solve for m„and mz to obtain

m 2= +71 Pz
2+@„o' " 2+

Solving for a and (d —2)/c„, we get

2(m„' —m»')
m„+ 2m+

(24)

(25)
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In conclusion, we wish to emphasize that the
combined SU(3)SSU(3) and dilation symmetry
broken by (3 34') $(3*,3) terms not only resolves
the Cheng-Dashen paradox, but leaves the results
of GMOR unchanged.
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It is suggested that perturbation-theory corrections to the limit of spontaneously bro-
ken SU(3) SU(3) symmetry fail because of the existence of a radius of convergence
which is much smaller than the experimental values of the symmetry-breaking param-
eters. The results are compatible with SU(3) being a good symmetry for states even
though the Lagrangian has approximate SU(2) SU(2) symmetry.

Although the breaking of SU(3) Ia SU(3) symme-
try appears to be small in some respects, ' dif-
ficulties arise when corrections to the symmet-
ric limit are computed in perturbation theory. "
These difficulties may be traced to the way in
which chiral symmetry manifests itself by the
"spontaneous breakdown" mechanism and the as-
sociated occurrence of an octet of massless
pseudoscalar mesons. I i and Pagels have re-
cently shown' that perturbative closed loops in-
volving the massless bosons give rise to non-
analytic (logarithmic) behavior near the origin
in the symmetry-breaking coupling constant. By
examination of the SU(3} o model' we have found
that perturbation theory fails even without con-

sidering closed loops because of the existence of
a radius of convergence which is much smaller
than the value of the symmetry-breaking param-
eter required to fit experimental data. However
SU(3} symmetry breaking can be computed by
perturbation theory about idealized solutions cor-
responding to either SU(3)- or SU(2) SSU(2}-sym-
metric limits. In this way one can understand
explicitly how SU(3) can be a good symmetry for
states while the Lagrangian is nearly SU(2)
IN SU(2) symmetric. The qualitative structure of
our results suggests that the phenomenon is gen-
eral.

The model, which is constructed from nonets
of scalar and pseudoscalar fields o,, y, (i =0,

8), is described by the Lagrangian'

8 = —,
' Tr&„3Rta"SR+f,(Tr3R %)'+f, Tr5R 3NR SR+g(detIR+H. c.) —e,v, —e,o',.

Here 3R is a 3 x3 matrix' transforming as (3, 3*).
In the limit &, -0, e, -0, 2 has SU(3) SSU(3)
symmetry. .We suppose that the couplings f„f„
and g are such that in the limit the normal vacu-
um is unstable with respect to the Goldstone-
Nambu solution. "We shall assume that in the
limit e, -0 the vacuum is SU(3) symmetric, and
that the vacuum expectation value (o,) g0. In gen-
eral we write (o,) = g„(ag = g„and denote the
SU(3) 8 SU(3)-symmetric value of $, by g,. We
shall solve (1) in the semiclassical "tree approx-
imation, "writing cd = $p+o, ', o, = g, +o, ', and ex-
panding (1) about its extremal. ' The lowest or-
der masses are given by the quadratic terms and
the extremal condition by the elimination of the
terms linear in op

The extremal conditions relate 'Ep &8 to $p
It is convenient to use" the variables $p aIld b
=- $,/~2$, rather than $„$,. We then find" the

relations

&o = F,(go, b}, ~,/W2= E,((o, b), (2)

where the E,. are defined by the sequence of equa-
tions

~,(~., b} = 4'l-,'~.G(» y(1- b')],

+2(go, b) = $o'b[44H(b) —y(1+ b) ],

G(b) = 3f,(1+2b ) +f,(1+Sb —2b'),

H(b) =f,(1+2b') +f~(1 —b+b'),

and the parameter y is 2g/W3.
Before analyzing these equations to determine

how $, and b depend on e„e, we record the nu-
merical predictions of the model. These results
are needed for the interpretation of (2) and more-
over demonstrate that the model gives a reason-
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