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It is shown that if the chiral SU(3) ®SU(3) and scale-invariant limits coincide, chiral-
symmetry breaking by (3,3*) @ (3*, 3) terms provide a consistent description incorporat-
ing the results of Cheng and Dashen and of Gell-Mann, Oakes, and Renner.

In this note we discuss the implications of the
recent result of Cheng and Dashen' within the
context of the (3, 3*) ©(3*, 3)-breaking model*? of
SU(3)®SU(3) symmetry.

Consider, to start with, the usual®® (3,3%*)
® (3*, 3) breaking model of SU(3)&SU(3),

H=H,+¢€,S,+€S;, €/¢€,=c, (1)

where S, (=0, 1, +++, 8) is the nonet of scalar
densities which, together with an appropriate
nonet of pseudoscalar densities, transforms as
the (3,3*) ®(3*, 3) representation of SU(3)&SU(3).
The success of current algebra suggests that H,,
which is SU(3)&SU(3) invariant, describes a
world containing a massless octet of pseudoscalar
mesons. Also if SU(3)&SU(3) is a reasonable
symmetry of nature, one expects that in the sym-
metry limit other quantities, like masses of bar-
yons, coupling constants, etc., do not change ap-
preciably from their physical values. However,
the result of Cheng and Dashen' shows the con-
trary. For the value ¢ =~ -1,25 obtained by Gell-
Mann, Oakes, and Renner? (GMOR), this result
indicates that the mass of the nucleon is drasti-
cally altered? in the SU(3)®SU(3)-symmetric
world, so that the physical masses of the bar-
yons® seem to arise predominantly from the sym-
metry-breaking terms in (1). This result intro-
duces serious problems. Consider as an exam-
ple the usual or generalized Goldberger-Treiman
relations which are exact consequences in the
SU(3)&SU(3)-symmetric world. If these rela-
tions are approximately valid in nature, clearly
a drastic change in the baryon mass must be
compensated by an equally remarkable change in
one or more of the coupling parameters that en-
ter these relations. The approximate experimen-
tal validity of Goldberger-Treiman relations
would thus be quite accidental. Note that an ad
hoc change in the value of ¢ is not an acceptable
solution, since this would upset the pseudoscalar-
meson masses, according to the analysis of
GMOR.

A way out® of the paradox is the proposition
that the SU(3)&SU(3)-symmetric limit coincides
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with the limit of scale invariance realized through
the massless dilaton 0. This possibility was
raised by Gell-Mann’ and has been studied by
several authors. Within the framework of the
(3,3*) ®(3*, 3) model, we suggest that this is the
only simple way out. Instead of (1), we may ac-
cordingly consider the following model® for the
energy-momentum tensor.

000 = 0o +0 + €S, (2)

where 6, is chiral and scale invariant, 6 is
chiral invariant but breaks scale invariance, and
€S = €,5, + €,5, breaks both chiral and scale sym-
metries, and will be assumed to have a unique
dimension d. We shall also take 6 to be a c-num-
ber. For (2), one obtains the virial theorem

-6,,=(4~d)eS +40. (3)

Note that from Lorentz invariance, since (0!9,1 ,,lO)
=0, we get 40 =(d — 4){0leSI0), so that 6~0 as €
~0. Thus €-0 leads to the combined SU(3)
®SU(3)- and scale-invariant limit. As mentioned
before we have assumed that in this limit the
pseudoscalar mesons as well as the scalar dila-
ton are massless.

Using the normalization (p!-6,,/p)=M/V,
where M is the mass of the baryon described by
the state Ip) at rest, one finds for the nucleon

My/V =(4-d){pleS|p)com. - (4)

Now as stated, the result of Cheng and Dashen
for the model (1) suggests that the entire mass
of the nucleon arises from the symmetry-break-
ing terms in (1), i.e., M,/V ={pleSlp), if c is
close to the GMOR value. Within the framework
of the model (2), this then implies® that d =3.
More significantly, however, the result of Cheng
and Dashen can now be reinterpreted for model
(2) as follows. For the model (1), the Cheng-
Dashen result implies a vanishing nucleon mass
in the symmetry limit € -~ 0, which leads to the
difficulties mentioned above. However, for the
model (2) M,(€~0)+0. To see how this arises
note that the matrix element (p’leSlp) will have a
o-pole term « €/(t—m2), where t=~(p —=p').
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From (4), it is clear that M, will then have a
contribution <« €/m 2 which will be finite for €~0
if m 2 =0(e€). Thus if SU(3)&SU(3)- and scale-
invariant limits are coincident as in the model
(2), in general M,(e—=0)#0. The importance of
the o-pole terms was first pointed out and dis-
cussed by Ellis.® Clearly the combined symme-
try limit (€ = 0) would make sense if the o-pole
contribution, i.e., My(e—0), nearly accounts for
the entire nucleon mass, leaving the rest of €-
dependent terms as a small perturbation. It is
easy to show from Eq. (4) that this implies®

M p(e=0) =f,Gyyo=My, (5)

where the coupling constants f, are defined
through the following matrix element:

16, (0) o(k)) = 5(2,V) /2

xfo(m025 pv+kuku), (6)

and G, ., is the NNo coupling constant. Note that
the o-pole term in Eq. (5) does not depend explic-
itly on the scale dimension d. However the value
d =3 is the preferred one, if as mentioned c is
close to the GMOR value. One is then led to
question if ¢ for the model (2) is still given by
the GMOR value. This is not a priori evident
since one has to keep track of the o-pole terms.
To settle this question, we now turn our attention
to the masses of pseudoscalar mesons in the
model (2).

It has been pointed out'! that the pseudoscalar-
meson mass formula

m® =(2p,V){pleS|p) (7)

used by GMOR for the model (1) is not generally
valid for the model (2). For the model (2) the
appropriate relation is instead obtained from
Eq. (3):

zmz =(4 —d)(zpov)<l’,€s ’p)eonn. ’ (8)

where we have used the normalization (2p,V)
x{pl-6,,|p)=2m? for the meson state |p) of mass
m. We first show that if we use SU(3) paramet-
rization for the full matrix element in Eq. (8),
we reproduce the GMOR results but for d =2,
Thus if we assume

(46, V)2 P (@)1 S ,(0)P (£ comn.
=a(1)8 ;48,,+B(t)d,,, (9)

for i,k=1,---,8, andj=0,1, ---, 8, we obtain
from Eq. (8)

(m 2 =m,?) == (4 -d)(V3/4)B(0)e,. (10)

Also, note that if we consider the K ;; matrix ele-
ment

(4042,V2) 2 °(@)| v, 5(0)| K *(p)
=3V2[(p +q) F.(t) +(p = q) ,F_(2)], (11)
we get for the matrix element of the divergence
(4pa, V)2 @°@)lo,V,* B0 K *(p)
=3v2d(t) (12)
with
d(t) =(m 2 —m 2)F () +tF_(¢).

Now using'? 8 ,V,* % =— 3V3 ¢,S*"**, we obtain
from Eqgs. (12) and (9) the result
d(0)=m[{z-m1r2=— %J—s-ﬁ(o)egy (13)

where in the first equation in (13) we have used
F,(0) =1, the SU(3) value. Note that Eqs. (13)
and (10) imply that d =2, so that the mass formu-
la (8) reduces to (7), and the analysis of GMOR
goes through unaltered. The result d =2 however
contradicts the previous result, d =3. The diffi-
culty lies in the SU(3) parametrization in Eq. (9).
Indeed, because of the existence of the low-lying
o pole, one may expect some distortions in the
SU(3) result (9) near ¢ =0.

Explicitly calculating the o-pole contribution to
the matrix element in Eq. (8), we then obtain

2mn2 =foco.,”r+(4—d)(ZpOV)<7T|€SI7T>n,p,, (14)
2m i =f oG o + (4 = d)(20oV)(KI€S KDy ., (15)

where the suffix n.p. denotes no o pole. If we
neglect all the n.p. terms and retain only the o-
pole contributions, Eqs. (14) and (15) reduce to
the usual consequences of partial conservation
of dilatation current (PCDC).!'? Carruthers!? has
suggested that the PCDC result for mesons
should be abandoned. The reason for this in the
present approach is quite transparent. Note that
whereas the o terms for the baryon mass [see
Eq. (5)] are of order unity in the limit €~0, the
corresponding o terms in Eqgs. (14) and (15) are
of order €. This is because G, , and G, van-
ish in the combined symmetry limit when pions,
kaons, and the ¢ are massless. In fact applying
the hypotheses of partial conservation of axial-
vector current to the matrix elements (1A ,"lo)
and (K1A ,*¥lo), one obtains®® G, ,>m 2 —m,? and
Goxkx><m2—m % Thus whereas the o pole in-
deed dominates for the baryon masses, it gives
a contribution of the same order as the n.p.
terms for mesons.
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Having extracted the o contributions explicitly,
we may now parametrize the n.p. matrix ele-
ments using SU(3). Using Eq. (9) only for the
nonpole terms this time, and using the same
symbols for economy, we then obtain

zmﬂz =foG o1r1r+(4 -d)(‘yeo +B€B-J§)’
2m 2 =f oG o gic +(4 = d)(v€, = £V3 Bey), (16)
y=a+V2/38.

Note that, since the K,; matrix element in Eq.
(12) gets no contribution from the o pole, Eq.
(13) is still valid. From the foregoing analysis,
we may also express

foGomr:Cn(m 02 - mﬂz)’

(17)
foc OKK =ck(m 02 - ml{z)a

where ¢, and ¢, are proportionality constants

which can be shown'® in general to be of order

unity. Using Eqgs. (16) with (13) and (17), we can

now solve for m .2 and m,? to obtain

__9@ __9@
1r2—2+:;’"m02; mK2_2+; mozy (18)
where
[ Cxk=—C
=c.—2(4 - tk=ZCm
Pr=cr—%(4 d)<a+1>d—2+ck’ (19)
@g=c _3(4_‘1)(9._1)_21;& (20)
K "k 3 a 2/d-2+c,
with
=T = £ 1
6 \/Zﬁanda (—2;—:)"{75. (21)

Note that a =¢/¥2, where ¢ is the GMOR param-
eter in Eq. (1). For a=-1, the model (2) is
SU(2)® SU(2) invariant,® but not scale invariant.
Thus at a= -1, we may require m -0 with
my2+0. Similarly at a=2 we realize chimeral
SU(3) symmetry'* without scale invariance, so
that we require m ,%—~0 at a=2 with m 2+#0.
These conditions give

¢ (@a=-1)=@x@a=2)=0. (22)

If we assume that d, 6, c,, and c, do not depend
—at least do not depend sensitively—on a, we
obtain from Eq. (18)-(20) and (22) the mass for-
mulas

2_ ¢ (1+a) ) 2
@-2)a+c,(1+a) °’

m.E= c (2 -a) o2
k" [8¢c,-22-d)|a+c,(2-a) °"

My

(23)
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Solving for a and (d -2)/c,, we get

2(m -m,®

a= :n2+2mK2) ’ (24)
d-2 Mm% — M g?

. $ mcz_mlz- (25)

It is interesting to note that Eq. (24) gives exact-
ly the GMOR value for a. Moreover this value of
a has been obtained independently of any specific
assumption on the value of d. Equations (25) and
(17) lead to the determination f,G ., .= %(d - 2)

X (m 2 -m,?), which for d =3 gives f,G,,,~-8m,>2.
This differs from the numerical result of Car-
ruthers'® by about a factor of 2. However, in

view of the obviously crude nature of the avail-
able data, this may not be serious.

In conclusion, we wish to emphasize that the
combined SU(3)&SU(3) and dilation symmetry
broken by (3,3*) ®(3*, 3) terms not only resolves
the Cheng-Dashen paradox, but leaves the results
of GMOR unchanged.
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It is suggested that perturbation-theory corrections to the limit of spontaneously bro-
ken SU(3) ®SU(3) symmetry fail because of the existence of a radius of convergence
which is much smaller than the experimental values of the symmetry~-breaking param-
eters. The results are compatible with SU(3) being a good symmetry for states even
though the Lagrangian has approximate SU(2) ®SU(2) symmetry.

Although the breaking of SU(3) ® SU(3) symme-
try appears to be small in some respects,’® dif-
ficulties arise when corrections to the symmet-
ric limit are computed in perturbation theory.?
These difficulties may be traced to the way in
which chiral symmetry manifests itself by the
“spontaneous breakdown” mechanism and the as-
sociated occurrence of an octet of massless
pseudoscalar mesons. Li and Pagels have re-
cently shown?® that perturbative closed loops in-
volving the massless bosons give rise to non-
analytic (logarithmic) behavior near the origin
in the symmetry-breaking coupling constant. By
examination of the SU(3) ¢ model* we have found
that perturbation theory fails even without con- ]

sidering closed loops because of the existence of
a radius of convergence which is much smaller
than the value of the symmetry-breaking param-
eter required to fit experimental data. However
SU(3) symmetry breaking can be computed by
perturbation theory about idealized solutions cor-
responding to either SU(3)- or SU(2) ® SU(2)-sym-
metric limits. In this way one can understand
explicitly how SU(3) can be a good symmetry for
states while the Lagrangian is nearly SU(2)
® SU(2) symmetric. The qualitative structure of
our results suggests that the phenomenon is gen-
eral.

The model, which is constructed from nonets
of scalar and pseudoscalar fields o,, ¢, (=0,
-++,8), is described by the Lagrangian®

£=4Trd M9 IM +£,(TrIM "IN)? +£, TrIN TINIM I + g(detI + H.c.) - €,0, ~ €,05. (1)

Here M is a 3 X3 matrix® transforming as (3, 3*).
In the limit €,~0, €,~0, £ has SU(3)® SU(3)
symmetry. We suppose that the couplings f,, f,,
and g are such that in the limit the normal vacu-
um is unstable with respect to the Goldstone-
Nambu solution.”® We shall assume that in the
limit €; -0 the vacuum is SU(3) symmetric, and
that the vacuum expectation value (00> #0. In gen-
eral we write (0,) = £,, (0y) =£,, and denote the
SU(3) ® SU(3)-symmetric value of £, by £, We
shall solve (1) in the semiclassical “tree approx-
imation,” writing 0,=£,+0,’, 04=£,+0;’, and ex-
panding (1) about its extremal.® The lowest or-
der masses are given by the quadratic terms and
the extremal condition by the elimination of the
terms linear in 0/, 0,’.

The extremal conditions relate €, €, to &, &,.
It is convenient to use'® the variables &, and b
= ¢,/V2¢, rather than £, £,. We then find!! the

relations
€o=F1(§m b), €e/ﬁ=Fz(§o’ b), (2)

where the F; are defined by the sequence of equa-
tions

F\(&, b) = £,°[1£,G(b) +¥(1 - b)),
Fy(&, b) = £,2b[4£,H(D) - ¥(1 +b)],
G(b) = 3f1(1 +2b?%) +f2(1 +6b% - 2b%),
H(D) =£,(1+2b2) +£,(1- b +b?),

(3

and the parameter y is 2g/v3.

Before analyzing these equations to determine
how &, and b depend on €,, €; we record the nu-
merical predictions of the model. These results
are needed for the interpretation of (2) and more-
over demonstrate that the model gives a reason-
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