VOLUME 27, NUMBER 7

PHYSICAL REVIEW LETTERS

16 AucusT 1971

Submicroscopic-Void Resonance: The Effect of Internal Roughness on Optical Absorption

F. L. Galeener
Xevrox Palo Alto Reseavch Center, Palo Alto, California 94304
(Received 13 May 1971)

An expression is developed for the optical dielectric constant of a medium containing
submicroscopic voids. For an absorbing host medium, voids introduce additional opti-
cal structure resembling that due to surface roughness. Void resonance absorption may
account for unexplained structure recently reported in the optical constants of amor-

phous germanium.

The physical properties of thin films of amor-
phous semiconductors™? are currently subjects of
lively interest and controversy. Discrepancies in
experimental results reported by different labora-
tories are widely ascribed to incomplete charac-
terization of samples. Adequate characterization
of thin films is notoriously difficult,® partly be-
cause of the frequent occurrence of microscopic
inhomogeneities in the form of compositional fluc-
tuations, granules, or pinholes. Effects due to
extremely small structural imperfections may be
important: Thus, inhomogeneities with dimen-
sions less than 50 A have recently been postulat-
ed to account for results observed in electron-
spin-resonance® and electron-diffraction® studies
of amorphous Si. Optical effects have not been
elucidated.

Previous theories of the optical properties of
inhomogeneous films have focused attention on
the scattering of waves by islands (or microparti-
cles) of solid material® whose imperfect fit with
one another leaves irregular void spaces in the
sample. As will be shown elsewhere, there is
profound computational advantage in treating
dense inhomogeneous films from the present al-
ternative point of view, wherein waves are con-
sidered to propagate in the solid regions and suf-
fer scattering by the void spaces.

This Letter presents a simple theory for the ef-
fect of sharply delimited submicroscopic voids on
the optical constants of a material. The theory is
entirely classical and assumes a steplike change
in local permittivity at each void surface. The
results predict that the introduction of voids into
an absorbing host leads both to diminution of ab-
sorption characteristic of the host aznd to the ap-
pearance of new resonance peaks in the imaginary
part of the effective dielectric constant. These
latter peaks are termed “submicroscopic-void
resonances” when caused by internal voids too
small to be resolved by radiation of the wave-
lengths involved.

To facilitate mathematics the highly idealized

model shown in Fig. 1 is assumed. The voids are
approximated by aligned ellipsoidal vacuum spac-
es of various sizes having identical shapes and
depolarization factors L.” They comprise a vol-
ume fraction & of the composite material; the
host material occupies a volume fraction 1- 4.
The host material (between the voids) is assumed
to be isotropic with a complex dielectric constant
K=K’ +ik” which may be a strong function of sev-
eral variables, including photon energy and sam-
ple temperature.

The problem then is to calculate wave propaga-
tion through a disordered array of aligned, aniso-
tropically polarizable scatterers. Complete re-
sults, including multiple scattering for the case
of dipole scatterers, will be presented elsewhere.
It can be shown that the effective dielectric con-
stant of the composite medium is a fensor with
symmetry properties related to those of an indi-
vidual void. The special case of polarization
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FIG. 1. Idealized model of submicroscopic voids,
consisting of oriented ellipsoidal vacuum spaces having
different sizes but the same shape. Void dimensions
are assumed small, on the scale of the spatial varia-
tion of plane waves in vacuum or in the bulk interstitial
material.
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along a principal axis of a void (assumed in Fig.
1) reduces, for 6«1, to an expression reminis-
cent of the Clausius-Mossotti equation®:

Keff= k(1 + %5”1))/(1 - %6"1))’ (1)

where K¢ is the effective dielectric constant of
the composite medium and 7, is the electric po-
larizability per unit volume of an isolated ellip-
soidal void in an unbounded space of the host ma-
terial. As in the rest of the paper, mks units are
used.

The polarizability of an isolated void is calcu-
lated in the Rayleigh limit of classical scattering
theory,® which requires the void to be small com-
pared to the wavelength and decay length of plane
waves in the host. As will be shown elsewhere,
the principal polarizabilities 7 of an ellipsoidal
void of volume V then become

1-«

7T=VL+(1—L);(

=Vm,, (2)
where L is the depolarization factor for electric
fields directed along the principal axis of inter-
est. This result shows that the polarizability per
unit volume of the void (7,) is independent of the
void size (V) and reflects its shape only through
the factor L, which has range 0s L <1, Void
size consequently does not appear as a parameter
in k.¢;. For a distribution of void skapes, 7, in
Eq. (1) is replaced by a weighted average of the
expression in (2), covering the values of L in-
volved.

When the effective dielectric constant is evalu-
ated using Eq. (2) in Eq. (1), it is possible to ar-
range the results in the following way:

kKegs=F +HKk —=FG /(k +G). (3)

Here F, G, and H are functions of 6 and L only,
given by

F=6/(1-L+%0),
G=(L-16)/(1=L+15), (4)
H=(1-L-28)/(1-L+3).

If the host dielectric constant has a peak in its
imaginary part (k”), then the second term of Eq.
(3) shows that this peak will also appear in k” ¢/,
reduced in strength as the volume fraction of
voids increases (H <1). The third term of Eq. (3)
accounts for void resonance, which will occur ap-
proximately'® when the real part of the host di-
electric constant (k') passes through the value

- G. This resonance will have strength ~FG /k”,
evaluated at resonance.®
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These effects are illustrated in Fig. 2 where
the dashed line corresponds to Eq. (3) evaluated
for a 15% volume fraction of spherical voids (L
=3) in a hypothetical Lorentzian host dielectric
shown by the solid line. Fixing attention on the
imaginary part (in the lower half of the figure)
one sees the reduction in strength of the host res-
onance (expected because there is a reduced num-
ber of host oscillators per unit volume of sample).
Note the nonlinearity associated with void interac-
tion through multiple scattering: The 15% concen-
tration of voids causes a 21% reduction in host
strength (H =0.79). One further observes the ad-
ditional void resonance line at X ~ - 4.1, occur-
ring near the condition k' = - 0.4 (note G ~0.4).
At the void resonance the absorptive part of k.¢¢
is nearly double that of the host without voids
(FG/k” ~0.7k”). The additional absorption is as-
sociated with energy lost into the host material
through the dipole fields scattered by each void.
A twofold increase in k” can result in remarkably
prominent effects in transmission or reflection.

Equation (3) can also be applied to films having
both electric and magnetic response. Effective
waves then have complex propagation constants
given by
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FIG. 2. Theoretical effect of spherical voids on the
complex dielectric constant of a hypothetical Lorentz-
ian medium, illustrating Eq. (3). The solid line repre-
sents the host material, while the dashed line corre-
sponds to the composite medium containing a 15% vol-
ume fraction of voids.
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where k, is the free space propagation constant,
while the superscripts e and m refer, respective-
ly, to electric and magnetic dipole contributions
to void scattering. The effective permittivity ra-
tio k.¢¢® is evaluated using Eq. (3) with « given by
k®=€/€,, where € is the bulk permittivity of the
solid material and €, that of vacuum. Similarly,
the effective permeability ratio k.¢¢™ is also giv-
en by Eq. (3) with « replaced by the permeability
ratio of the host, k™=pu/u,.

The foregoing expressions describe the coher-
ent component’! of the waves transmitted through
a randomly scattering sample. Void resonance
absorption in these waves can be directly related
to a peak in the forward scattering cross section
of an isolated void. In this sense, measurement
of the effective dielectric constant probes very
small-angle scattering.

Void resonance can be viewed as a bulk analog
of surface-roughness—induced plasmon absorp-
tion.'? In a normal-incidence experiment, sur-
face roughness induces surface wave absorption
approximately proportional to Im[1/(k +1)].3
Void losses are induced by roughness in the bulk
and for sparse distributions of spherical voids
vary like Im[1/(x + 4)]. The resonance conditions
for the two phenomena are very similar, «’'=-1
and k' = - 1, respectively. Internal roughness
may often physically go hand in hand with surface
roughness, and both will contribute neighboring
or overlapping structure to dielectric constants
determined by standard experimental techniques.
However, unlike surface-roughness absorption,
the total absorption due to voids will increase
with sample thickness.

As we have seen, voids can significantly alter
the optical properties of an absorbing film even
though they are much too small to be resolved by
visible light. Since Eq. (3) should hold for voids
only tens of angstroms in dimension, void reso-
nance may reveal defects irresolvable by electron

microscopy on films of normal thickness (>500 A).

In a forthcoming paper it will be shown that
void resonance provides a likely explanation for
the anomalous structure recently reported by

Donovan, Spicer, Bennett, and Ashley'* in the di-
electric constants of amorphous germanium. The
strength and position of the secondary peak they
observe at photon energies near 8 eV is consis-
tent with a 5% volume fraction of voids having av-
erage depolarization factor L =0.8. Void reso-
nance may also partially explain absorption struc-
ture reported in optical studies of evaporated
metal films,'® often ascribed entirely to surface-
roughness—induced plasmon absorption.

The author is grateful to Dr. G. Lucovsky and
Dr. R. Bauer for helpful comments on the manu-
script.

K. L. Chopra and S. K. Bahl, Phys. Rev. B1, 2545
(1970).

’M. H. Brodsky, R.S. Title, K. Weiser, and G. D.
Pettit, Phys. Rev. B 1, 2632 (1970).

3see, e.g., O. S. Heavens, Thin Film Physics (Methu-
en, London, 1970), Chap. 4.

‘M. H. Brodsky and R. S. Title, Phys. Rev. Lett. 23,
581 (1969).

5S. C. Moss and J. F. Graczyk, Phys. Rev. Lett. 23,
1167 (1969).

®See, e.g., O. S. Heavens, Optical Properties of Thin
Solid Films (Dover, New York, 1966), pp. 176—200.

"See, e.g., C. Kittel, Introduction to Solid State Phys -
ics (Wiley, New York, 1966), 3rd ed., p. 378, and
references quoted therein. Note that L (Gaussian)
=4nL (mks units) .

8The factor « is absent in the Clausius-Mosotti res-
ult.

V. Twersky, Appl. Opt. 3, 1150 (1964).

0These are excellent approximations when k” varies
slowly over the linewidth and is not too large at reso-
nance.

1. L. Foldy, Phys. Rev. 67, 107 (1945).

'2R. H. Ritchie and R. E. Wilems, Phys. Rev. 178,
372 (1969).

BE. T. Arakawa, R. N. Hamm, W. F. Hanson, and
T. M. Jelinek, in Optical Properties and Electronic
Structure of Metals and Alloys, edited by F. Abelés
(North-Holland, Amsterdam, 1966).

47, M. Donovan, W. E. Spicer, J. M. Bennett, and
E. J. Ashley, Phys. Rev. B 2, 397 (1970).

5see, e.g., J. T. Cox, G. Hass, and W. R. Hunter,
J. Opt. Soc. Amer. 61, 360 (1971).

423



