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An exactly solvable model is formulated for the electronically induced crystallographic
transition. The model contains the essential and new feature that the distortion is con-
ceived to be an operator. This entails a better understanding of the processes involved
in this type of transition.

One of the possible explanations of the metal-
nonmetal transition is in terms of the electron-
ically induced crystallographic transition. This
transition is thought to be a product of the com-
petition between the lattice energy and the energy
of the electrons. A crystalline distortion will
split up the energy bands resulting in a lower
energy of the electron system in case the origin-
al conduction band is partly filled, while the
lattice energy is raised by the distortion. In
this way a competition between the lattice and
electronic energies is obtained.

This effect has been studied by Adler and
Brooks. ' Starting from a linear chain of 5 poten-
tials they obtained criteria for this type of trans-
ition. These criteria were applied to several
models, e.g. , a model in which the energy bands
are spherical around the conduction- and valence-
band edges. In most cases Adler and Brooks
obtained a first-order phase transition. The
case of a linear chain of one-dimensional 5 po-
tentials, however, always gives rise to a second-
order phase transition as has been shown recent-

ly. ~ The effect was also studied by LaM4 and
Friedel. '" Their three-dimensional model ex-
hibits a first-order phase transition.

The theory of the electronically induced crystal-
lographic transition as formulated up till now
is a static theory; i.e., the electron-lattice in-
teraction introduced by the distortion is described
by a parameter. Minimization of the total free
energy with respect to this distortion parameter
yields the equilibrium value of the distorted sys-
tem for a fixed temperature and also determines
the order of the phase transition.

The purpose of this paper is to present a dy-
namic theory of the electronically induced crys-
tallographic transition; i.e., the distortion is
considered to be an operator. ' The great advan-
tage of this dynamic model with regard to the
static model is that the equilibrium value of the
distortion can be calculated directly by means of
the methods of quantum statistical mechanics
without resorting to the minimization procedure.
This is significant because the real nature of
the electron-lattice interaction, which is intro-
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duced by the distortion, is revealed in this way. Because of mathematical simplicity this Letter will
be concerned with the case of a one-dimensional crystal.

Consider a one-dimensional crystal composed of two interpenetrating sublattices. Shifting one sub-
lattice with respect to the other distorts the electronic band structure of the crystal. In the following
the case will be considered of one band, which is split up by the distortion into two sub-bands. Be-
cause the lattice energy is raised by an amount 2AT2, where 7. denotes the shift of both sublattices
with respect to each other, the Hamiltonian of the total system reads'

2N
P= Q ~„(~)c„.c„,+ 2A T*,

n =l, a

where e„(0)= e„denotes the band structure in the nondistorted case and 2N the total number of energy
levels within that band. The operators c„, and c„,are the we11-known fermion creation and annihila-
tion operators associated with the Bloch function p„(x)lcr}, which has the periodicity of the distorted
system, The free energy of the total system reads

2 2N

F= N, g ——+in(1+exp{P[p —e„(~)]}+-,'A 7,
n"-1

(2)

where ND denotes the total number of electrons present and p, the Fermi energy, which is determined
by

2N

N, =2„,&+expjP[~„(T)- p. ]} ' '

The temperature dependence of 7 is obtained by minimizing expression (2}with respect to 7. This func-
tion gp} decides about the eventual appearance of a phase transition and about the order of the phase
transition.

In order to treat the electronically induced crystallographic transition in terms of a dynamic model,
the distortion ~ has to be conceived as a dynamical variable. An additional term, however, has to be
incorporated into the Hamiltonian of the dynamic model. This term is the kinetic energy P~/2M due
to the relative motion of both sublattices with respect to each other, where 2A/I denotes the total mass
of a sublattice and it is assumed that both sublattices are identical. P and ~ are conjugate variables.
Expanding e„(~) aroung 7 = 0 and assuming the distortion to be small, the following Hamiltonian has
to be considered:

N 2N
2

n =isa n = 1.a n = iV+1, a
(4)

where v„= (de„/dr), , and the term
N

V„C„C„
n =l, a

is the electron-lattice interaction of the electrons situated in the lower sub-band, the minus sign
arising from the fact that the band is shifted downwards, while the term

2N

~ P v„c„.'c„.
n =N+1

(6)

denotes the electron-lattice interaction of the electrons in the upper sub-band. Changing to a second
quantized representation for the harmonic oscillator, the Hamiltonian of the dynamic model reads

2N N 2NP= Q e„c„,tc„,— Q w„(b+b )c„,~c„,+ Q w„(b+bt)c„, tc„+(u(btb+-,'),
n =h'+l, a

where w„=v„/(2M')' I and to~=A/M. Using the unitary transformation
1P = exp (- S)P'exp(S) = P + [P, S]+ 2, [[P,S],S] +
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where

w„ 2N
S= — Q "(b —bt)c„, c„,+ Q ~(b-bt)c„, c„

n =l, o n =N+l, o

the following unitarily equivalent Hamiltonian is obtained:

(8)

2 N 5 2N
&n(r) = —ZA „,1+exp[P((e„- p) —v„(r))] A „=„+,I+exp[P((e„—p)+ v„(r))]

'
n

The Fermi energy p, is determined by

2N N N

n =l, o n =l.ol m=1. o2

't1 2N 2N

v„vmc„a cn a cm a c~ on nt n 1 n 1 nl 2 nt
n =N+l, ol nt=N+1, oi

2N

n =1,ol nt=N+1, o2

It follows immediately from expression (8) that the effect of the distortion can be described in terms
of an effective electron-electron interaction. This interaction is attractive for electrons situated in
the same sub-band but repulsive and twice as strong in case both electrons are situated in different
sub-bands. The mechanism of the phase transition now becomes clear. Electrons are thermally ex-
cited from the lower to the upper sub-band. In case there are practically no electrons present in the
upper sub-band, a lot of energy is required in order to excite an electron from the lower to the upper
sub-band. The more electrons are excited, however, the easier the next one can be excited. In this
way a positive feedback is obtained and the scene is set for a phase transition.

The information concerning the order of the transition is obtained by calculating (r). After some
calculations the following transcendental equation results:

S 1 IE 1 N+
, 1+exp[P](e„- p, ) —v„(r)j] „„„1+exp[P{(e„—g)+v„(r))] 2 ' (10)

~here N, denotes the total number of electrons
present. The transcendental equation (9) has to
be solved graphically. Above a certain tempera-
ture T, 4 0 only one solution exists, namely,
(7) =0. Below T„however, more than one solu-
tion is obtained. In general a solution with (r)
w 0 results in the lowest free energy.

Obviously the dynamic model differs from the
static model in the sense that the distortion is
assumed to be an operator and that it contains
an additional kinetic energy term due to the rela-
tive motion of both sublattices with respect to
each other. Nevertheless both models give rise
to the same transcendental equation. The dy-
namic model, however, gives more insight into
the physical processes involved in order to ar-
rive at this transcendental equation.

Finally it should be remarked that the dynamic
model is exactly solvable and as such joins the
small class of model Hamiltonians Oike the BCS
Hamiltonian in superconductivity' ), which can

l be analyzed exactly and in every detail.
More details concerning the calculations and

the extension to more dimensions will be pre-
sented in a forthcoming paper.
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