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Ergodic Boundary in Numerical Simulations of Two-Dimensional Turbulence
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In numerical calculations, we observe a dichotomy in the time evolution of solutions of
the high-Reynolds-number, two-dimensional, incompressible Navier-Stokes equations
using power-law initial modal energy spectra E(w, 0}-w "6. The boundary is expressed
in terms of critical values of viscosity v«and microscale ~«. For both parameters ini-
tially above critical, p approaches 4. For both parameters initially below critical, p ap-
proaches 1 at large ~, consistent with equipartition of the vorticity spectrum. In the for-
mer case, large-scale vortex states form after a long time; and, in both cases, energy
Qows to the lowest wave numbers.

(u'(t})= —,'(u. u& =f E(g, t)dg;
0 (2)

here u= (u, v) and ~, the scalar wave number, is
2vk/L„, with k = 1, 2, ~ ~ ~, 2'' the integer —mode
number and L, the periodic interval in one direc-
tion.

Lilly 9 studied numerically the vorticity rep-
resentation of the two-dimensional (2D) Navier-
Stokes equations on an Nx N doubly periodic lat-
tice with N=64. Lilly interprets his results as
consistent with p, = 3.

We have obtained higher-resolution solutions
of the primitive Navier-Stokes equations,

8&Q+QB„Q+58„Q= —8 P+ PV Q,

8&g+QB g+vB v = —B„P+vV v,

8 Q+ Byte =
Oy

(3a}

(3b)

(3c)

and our results differ from Lilly's, as shown in
case 1, Table I. The results of case 2 show a

The incompressible Navier-Stokes equations
in two dimensions have attracted increasing
interest in recent years because of their rele-
vance in studies of atmospheric predictability. '~

Insights obtained will also help our understand-
ing of three-dimensional turbulence. Two- and
three-dimensional turbulence phenomena are
amenable to similar analytical treatments, but
only in the former environment can we perform
high-resolution numerical experiments and learn
synergetically. "

Kraichnan, ' Leith, ' and Batchelor' have given
theoretical and reasonable phenomenological
arguments for the existence of a temporally as-
ymptotic inertial range spectrum

E(~, t) = P(t)~ -",

where p = 3 and E(z, t) is the scalar modal ener-
gy spectrum, related to the total fluid energy by

TABLE I. Two-dimensional spectral power coeffi-
cients for the inertial r~nge (doubly periodic lattice,
N= 128; 64 wave numbers}.

Initial {t=0}
k region

Final
k region

Case 1
Case 2

4
2.5

2» k» 64
4 k 64

4
2.5
1

1 k»40
2 k( 14

14& k 64

~(~) = Hu'&/(s. u)'&]' ',

very different behavior, discussed below.
The results of case 1 are consistent with re-

cent theoretical-phenomenological studies by
Chorin" and Saffman. "The latter predicts an
equilibrium inertial range of 4. We have also
observed a p =4 spectrum in the fine-scale
structure of a two-dimensional inviscid shear
flow. 4

We solve (3) using a second-order finite-dif-
ference algorithm" that "semiconserves" ener-
gy and enforces the finite-difference analog of
(3c) at each time step. We apply periodic bound-
ary conditions on the unit square L„xL, = 2 &1.
We construct the initial velocity field from a
modal representation of the stream function g
which has random phases and yields a power-
law spectrum for E(a, 0) in a certain range of z
(see Table I}. We construct E(z, t) from the full
two-dimensional modal energy spectrum E(z„
K„t) by integrating around circular bands in the
f( -Ky plane. Table 0 gives properties of the
initial and final states of cases 2 and 2. Angular
brackets indicate spatial averages over (x, y);
and, unless otherwise specified, all quantities
are time dependent.

Figure l shows temporal variations of (u'),
enstrophy (ar'), ' microscale
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TABLE II. Properties of solutions on a 128x128 periodic lattice.

Case
Normalized

time 7 v x10 10 3xR),
Time
step

Integral
scale L Microscale X

Circulation
time

(time steps)

0
9.5
0

11.0

1.363
1.363
0.2974
0.2974

1.0
2.443
1.0
0.790

0
950

0
550

0.1818
0.4570
0.05357
0.1350

0.1363
0.3425
0.02974
0.02552

100
258

50
137

Normalized
time ~

0
9.5
0

11.0

Total
energy

1.0000
0.9460
1.0000
0.8480

Mode-4
energy

3.302 x 10 2

8.305 x10
0.2500
0.1120

Mode-40
energy

2.300x10 6

2.379 x 10 7

9.849 x10
1.389x10 3

Mode-64
energy

2.972x10 7

2.071 x10
2.567 x 10
9.677 x 10

390.6
128.5

8413
8429

—&t4) d(u )/dt

0.05325
0.008701
0.2503
0.2956

'L and A, are to be compared with 1.0, the periodicity interval.

integral scale

L (~) =
~f(u(x, y)u(x+ r, y)+ v (x, y)v (x, y +r))

x &r/(u'), (5)

and Reynolds number R ~(7) = (u')'~'X/v. Note
that u in the denominator of (4) and u and v in (5)
are velocity components obtained from (3). We

interpret the integral in (5) in discrete form as
a sum over displacements x+r and y+ r about
points (x, y). Cases l and 2 are approximately
the same duration when time is normalized with
initial circulation time according to v -=[(u'(0))' '/
I (o)1t =- f(u.')"/L.]&.

Figure 2 shows log-log plots of E(it, v)/a(u')
versus gX at particular times. Table I is the re-
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FIG. 2. Log-log plots of normalized modal energy
spectra versus K~(v) for cases 1 and 2. In each case,
the spectra at the particular times ~ =—((uo ) /Lo) t
=0, 2 are displaced downwards two decades and one de-
cade, respectively. Modes 6 and higher are shown as
unconnected dots. The dots represent computer output
at a specific time, that is, they are unaveraged.

suit of performing short-time averages over
spectra such as those in Fig. 2. The z 4 spec-
trum of Fig. 2(a) is approximately stationary in
time. The late-time, large-z ' energy spectrum
of Fig. 2(b} corresponds to an enstrophy spec-
trum linear in z, or a near equipertition of the
vorticity spectrum. Thus, we have identified an
"ergodic" or "stochastic" boundary for high-
Reynolds -number, two-dimensional numerical
turbulence depending upon the initial parameters,
for example the viscosity and distribution of
modal energies. Such boundaries have been pre-
dicted on the basis of heuristic analyses and
have been applied to nonlinear lattices in one
dimension" and to other physical systems. " In
observing movies of E(z, t), one sees small
fluctuations propagate toward higher wave num-
bers and energy feed slowly into the lowest wave
numbers.

The differences in the two cases are evident in

the time variation of X and R„.In Fig. 1(b}, they
both increase (as does the integral scale); in
Fig. 1(d), they both decrease slightly (the inte-
gral scale continues to increase on the average,
as a result of energy coupling to low wave num-
bers) T. he initial increase in (+') in Fig. 1(c) is
the result of a competition between generation
due to truncation errors and decay due to vis-
cosity [evident in Fig. 1(a)].

The increase of the k = 1 modal energy for
case 1, evident in Fig. 2, corresponds in phys-
ical space to a slow coalescence of smaller vor-
tices into a pair of counter-rotating, large-scale
vortices. At late times, these vortices "trap"
Lagrangian particles. " In case 2, the flow re-
mains significantly less structured although, at
late times, large-scale features are evident
(growth of low modes in Fig. 2).

Giorgini and Travis, "using a Fourier modal
representation with 64 x64 modes, studied 2D
Wavier-Stokes turbulence starting with R „=1500
and v= 10 ' (compare with case-2 parameters}
Their results show a turn-up in the high-z end
of the spectrum (see their Fig. 4), which we
interpret as incipient vorticity equipartition. In
three dimensions energy equipartition is ex-
pected for the truncated continuum problem"
where viscosity becomes infinite for x &z
(= Nv).

Our results are consistent with a boundary in
the X-v plane. For case 1, we have A. &X„and
v&v„, and for case 2, A (A.„andv(v„.If X

&A „andv (v„,we conjecture that the high end
of the spectrum will show a ~ ' behavior at very
long times. Case 2 and the Giorgini and Travis
results give evidence that this boundary is a
property of the truncated continuum 2D Navier-
Stokes equations and is not due to a specific nu-
merical algorithm and its associated aliasing
properties.
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Plasma diffusion due to static, nonaxisymmetric perturbations of magnetic or electric
field is analyzed in the low collision-frequency region. The diffusion coefficient is found
to be proportional to the fraction of the particles with slow drift, and can significantly
exceed classical diffusion.

In the dc octopole experiments, the plasma dif-
fusion has two distinctive stages. ' In the first
stage, when the plasma density is sufficiently
high, the density is inversely proportional to
time with constant density profile. The diffusion
coefficient is essentially classical, proportional
to the collision frequency and, therefore, to den-
sity. Subsequently, when the density becomes
very low, the plasma decays exponentially in
time, indicating a diffusion coefficient indepen-
dent of density. This nonclassical diffusion can-
not be attributed to plasma turbulence, as no
fluctuation of sufficient amplitude has been ob-
served, and has thus remained a mystery. Re-
cently, Ohkawa' suggested that the magnetic field
error could be important to the diffusion process
by inducing random walk across the magnetic
surface. In this Letter, the plasma diffusion due
to the breaking of the axisymmetry by the static
magnetic and electric perturbations is studied in
the low-density region, where the collision fre-
quency is lower than the average bounce (transit)
frequency of the electrons. The diffusion coef-
ficient De-E(5v~)'T has the following character-
istics: (i) The random-walk velocity (hvar} is
given by the radial drift velocity due to the non-
axisymmetric field perturbation, while the ran-
dom-walk frequency is given by the average drift
in the unperturbed state across the characteris-

tic scale length of the field perturbation. (ii) It
is independent of the plasma density, but depends
on the fraction of the particles with slow drift
velocity b., which contribute dominantly to diffu-
sion. (iii) The radial electric field is critical
for its existence.

Consider a plasma in an axisymmetric poloi-
dal field given by B= 44 xb, 8, where 4 is the flux
function and 8 the azimuthal angle. In the guid-
ing-center approximation, the particle dynamics
consists of three quasiperiodic motions with dis-
tinctive frequencies'. gyration around the mag-
netic field with gyrofrequency 0 = qB/Mc; bounce
(transit) along the field line with bounce (transit)
frequency v, =[$ds/o~, ] ', and drift across the
field line with drift frequency (0g E.vg E 0,
where c «1 is the ratio of gyroradius to the char-
acteristic scale length of the magnetic field. The
corresponding adiabatic invariants are p, = —,

' Mv~'/
B, J'=

wads Mv „,and A = $4' d8. In the absence of
nonaxisymmetric perturbation, the particle drift
is along 8, deviating from a given magnetic flux
surface 4 only by the order of gyroradius. The
nonaxisymmetric perturbation, either magnetic
or electrostatic, renders it possible for the par-
ticles to drift across the 4' surface, which is
also the constant-density surface for a Maxwelli-
an plasma. In the presence of collisions these
drifts lead to a random walk along the density
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