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We report exact solutions of the equations of self-induced transparency which gen-
eralize the linear theory of refractive index up to theoretical peak intensities of 10 ~

W cm . The refractive indices are real, and there is no dissipation from inhomogen-
eous broadening. We solve the dielectric-surface problem for these solutions. We
note the possibility of regaining previous analytical solutions in a fashion which permits
a slight extension and some critical examination of these.

The semiclassical equations of motion for a single, undamped two-level atom exposed to a plane-
polarized electromagnetic field E of arbitrary strength can be expressed in the pseudo 81och form

dr/dt =
&u && r; e = (sr„0, ur, ).

We consider a uniform dielectric consisting of n such atoms per unit volume and no host atoms. The
two-level atoms couple via the Maxwell wave equation

y x g x E + c '&'E/bt' = -4wnc 'O'P/et', (2)

where c is the velocity of light in vacuo. We report exact solutions of this system of equations which
contain two free parameters, namely, a frequency or reciprocal temporal length v and the field am-
plitude E, and which are valid on or off atomic resonance. ' We also report corresponding rotating
solutions. The solutions are distortionless in the exact sense of this, rather than in the sense of
Crisp' or of Arrechi et al. ,

' i.e.,
E(x, t) = E(x-Vt),

and exhibit self-induced transparency (SIT) first reported by McCall and Hahn. "They appear to be
the natural nonlinear generalizations of linear theory and considerably extend our understanding of
the SIT phenomenon. The mathematical theory bears directly on that: of all the previous analytical
SIT solutions. 2 '

The notation in (1) is as follows: r= (r„r~,r, ); r, = p~ po„rm=i(p~ po, ); an—d r3= p„-p«. The
two atomic states are labeled s (upper) and 0, and p = p(x, t) is the density operator. The atom's ener-
gy spacing is h~, and ~,= ~, . The interaction is contained in

(o, =- (u, (x, t) = -2ex„k 'E(x, t);-
x„=x~ is the matrix element of the dipole operator x. The atoms are inhomogeneously broadened:
In (2),

P(x, t) =uex„ f, g((u, )r, ((u„x, f)Ao, , (5)

with g(&, ) normalized to unity; ri is a unit polarization vector. Since the medium is isotropic, E(x, t )
=uE(x, t), and only the magnitudes E(x, t) and P(x, t) appear in the theory.

A "sharp-line" solution is one for which g(~, ) =5(~, -~,). An important result is that if we can find
a sharp-line solution of (1) and (2) which is valid on or off resonance, we can always find an inhomo-
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(ea)

(P is a principal-value integral), while for each v,

geneously broadened solution'; and this is a SIT solution if the sharp-line solution is distortionless in

the sense of (3). We have found such solutions. Exact solutions are possible because the theory de-
scribed by (1) and (2) is a decorrelated one. Correlation is introduced empirically as inhomogeneous

broadening. Intrinsic damping is omitted, but damping is still possible because the atomic dipoles

exo, r, (&u„x, t) can rapidly dephase without total destruction by the act of radiation. Slower relaxation
processes then remove the energy locked in the atomic dipoles. This process introduces an imagin-
ary part in the complex refractive index, and this describes Beer's-law decay in linear theory. %e
find that such decay is explicitly quenched in the SIT phenomenon and the generalized refractive in-
dices are wholly real.

In linear theory r~ is constant and equal to its initial value r~(t, ). We find from (1) and (2) that the
refractive index m at frequency v is given by

m (v) 1 4 lT ne'x
( ) P g(~ )2~ dtu ~

( )
m~(v)+2 3 I "0 &, -v

P(z, t)=Ce """ sin[v(t to pz-c -')], p =Re(m), rt=im{m);

and again for each v, (2) means that"

E(z, t)=+~ v[n( m' +2)/(m 21)]P(z, t)

(6b)

which determines C in terms of E.
An exact solution of (1) and (2) is obtained heuristically by retaining the condition (7) instead of (2).

This reduces (1) to

P(r) +AP(r) = -BP'(r),

where

A—= (u,l+(u, r, (r, )X, 8=--,'x2e 'x„', A-=8 pnezx„'h '(m'+2)/(m~ —1), r =—t —t, -mzc '.

(8a)

(8b)

This heuristic argument is precisely equivalent to demanding distortionless solutions of (1) and (2).
Proof of this follows best by exhibiting (1) and (2) (after first Fourier transforming to a variable &u on
the time t) as the nonlinear integral equation for each atom:

r, (&u„z, u) = -r~(&u„ to)2e&u, x„R '(&u, n-&u2) 'E (z, w)

((u,2 -~') '(2z) If (u, (z, (u')((u-(u') 'f ~,( zen")[co-(u'-(u"].

&& r, (&u„z, ur —w ' —u")d&o "dry ' (9a)

in which P, (z, u) = —2eK 'xD, E (z, &u), the transform of &u, (z, t). For a dielectric in a region V the most
general form of E is

E(x, ~) =E,„,(X, ~)+n)E(x, f" (u) P(x', u))d'x', (9b)

which is an integral of the Fourier transform of (2). [F is the tensor Green's function of this equation;
E,„, is an "external" field. The linear approximation which retains only the linear term on the right-
hand side of (9a) is a linear integral equation fundamental to the linear theory of refractive indices. "~]

The exact solution of (8) or (9), which replaces the Iinearized solution (5), is the Jacobian elliptic-
function solution

P(z, t) = Ccn[(vr K), k), r -&0,

=0, 7 &0.
(10a)

The function cn(x, k) is periodic in x with period 4K, and K is an elliptic integral determined by the
modulus k. We choose E and v as free parameters. Then we find k~ =M),~v ~, where the Rabi frequen-

y ~x=exo ES and

m'(v) —1 4v net„' g(&u, )r, (&u„ t, ) &u,2
m'(v) + 2 3 8 o (u, i - v'+ 2w, l (10b)

331



VOLUME 27, NUMBER 6 PHYSICAL REVIEW LETTERS 9 AUGUsT 1971

This generalized dispersion relation exhibits power "broadening. " Given E and v, m is determined

by (10b), k is determined, and C is determined by (7). Then P(z, t) is determined.

By making use of (9) we have also solved the problem of the dielectric half-space in which the mode

(10a) runs in the region z &0. The input in z &0 proves to be the function (10a) with m = 1 and an am-
plitude of, say, E,. The amplitude E of E(x, t) inside the dielectric is determined by the usual trans-
mission coefficient (corrected by the internal field): E =2 (1+m) '(m2+2)E, . It mimics linear theory
solely because E(X, t) is distortionless for both z &0 and z &0. Likewise, reflection into z &0 follows
linear theory. Given E, and e we can find m, E, and k; and E, and v are now the free parameters.

The cn function is a Fourier series with a fundamental of frequency 1&v/2K and all odd harmonics.
No physical source in vacuo of such a perfectly phased wave group is yet available, but the group (10a)
may develop inside a dielectric. Certainly this is the natural nonlinear generalization of (6b), and in-
deed, at resonance, v =&a„and when, e.g. , u;, & 10" Hz, k «I and (10a) is close to the sine function.
Thus (10a) is the plane-polarized analog of the "spin-locked" solution'2 reported by Crisp2 in the ro-
tating-wave and slowly-varying-amplitude approximations. But because (10a) is an exact solution of
(1) and (2) we now have means both of assessing these approximations and of studying odd-harmonic
generation. Moreover, when u', = o~, on resonance or v =u, off resonance, A =1, and it becomes essen-
tial to include all the odd harmonics for distortionless propagation [as Eq. (13) below shows].

It is not obvious that (10a) is a SIT solution since (10b) resonates where v=t(&&, 2+22v, 2)"2. Then
we must interpret v as v+i5 (with 5 &0) and the expression has both real and imaginary parts in strict
analogy with (6a). However we find that the initial condition r2(&u, , t, ) for 2'2 depends on 1»„v, and E:

2(V2 1V 2) - 1/2

r, (1d„ t, ) =+ 1+,
S

242

m2(v) —1 47( ne x„g(&,)2~,d&,
2(V)+2 3 Z o [(K 2 —V2)2+4%' 2R& 2]1 2

(12)

The final form (12) of the dispersion relation means that m is real (excluding m' &0) and there is no
damping. The Kramers-Kronig relations do not apply. We find essentially the same feature in all
SIT solutions including the rotating ones: It occurs in the McCall-Hahn' SIT solutions'~ and their gen-
eralizations. "' The "spin-locked" solution, for example, has r, =const, is trigonometric, and looks
linear. However, we need r2(&u„ t,) =0 near resonance and this precise nonlinear requirement makes
the solution a SIT solution. Thus SIT seems to rely on an explicit quenching of Beer's-law decay by
the ability of the perfectly phased propagating modes like (10a) to carry a measure of the information
built into the initial conditions.

Unfortunately the initial condition (11)means in general that the dielectric cannot simply be pre-
pared as an amplifier or attenuator [r2(1v, , t, ) =+ 1]. However, we find that if we use the averaged
equations of Icsevgi and Lamb' in the weak-damping limit, the solution (10a) goes through and the
limit of terms in (pumping/damping) replaces r2(v„ to). This solution still requires that the phase-
determining quantity 22(rd„z, t, ) be carefully prepared throughout the dielectric, or we must accept a
jump from r2(~, , z, t, ) =0 as the wave front on t —mzc =t, penetrates into dielectric. This extreme
sensitivity to initial conditions may not be a physical feature: Highly organized solutions like (10a)
may ultimately impress themselves over a long enough time on a dielectric prepared in an arbitrary
way "-specially if forced by the matching solution in vacuo in the region z &0. In this case we can
also expect to propagate chopped (and hence pulsed) solutions like (10a) in which P(z, t) cuts off at
t = t, 2 +Kavt z = 0 (v is an integer).

The condition (12) reduces to r2(~„ to) = a 1 independent of the 1&, when, but only when, v =tv, . In
this case k = 1 and

P(~) = C sech[w, (t —mzc ')], E(7.) =E sech[u. ,(t —mzc ')]. (13)
This is a pure hyperbolic-secant pulse (of area 2&1) without carrier and is an exact distortionless solu-
tion of (1) and (2); it contrasts strongly with McCall's and Hahn's hyperbolic secant envelope Equa-.
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tion (7) relates E and C with the result for m(v) = m(w, ):
m2(w, ) —1 4w ne'x„' I'"g(&u, )2~,
m (Rl )+2 3 I (d +(d

(14)

Thus m is real and (13) is a SIT solution. It is then of most interest at resonance, however, where
v w y 10 Hz and the peak intensity and energy must be the extreme value s —j0"W cm and - 1 J
cm 2. The pulse is indeed one-haIf an optical cycIe properly shaped to propagate as a SIT solution—the best approach to a distortionless 5-function pulse. As long as v =w„and the model is applic-
able, (13) and (14) apply off resonance also, however, and the pulse can therefore be of arbitrary
temporal length w, ' ~so, ' and of arbitrary, and hence much smaller, energy. The nonlinear SIT
character of the solution is now of lesser interest: r, (&u„r) pulses (as +tanh2w, r) on resonance and
is almost constant off resonance where w, «~, 2.

The new solutions (10) and (13) are of interest as natural generalizations of linear theory up to ex-
treme powers and exceptionally short pulse lengths. As physical solutions their significance may lie
in astrophysical phenomena. They are perfect in the distortionless sense of (3), however, and other
approximate solutions of (1) and (2) may evolve towards them on a long enough time scale. As math-
ematical solutions they bear directly on the pulsed rotating SIT solutions of McCall and Hahn. ' We
find (a) that in vapors where n is small enough (-10~) the argument for the solutions (10a) and (13)
can apply to pulse envelopes traveling at a velocity c/M which modulate carriers of frequency v travel-
ing at velocity c/m. We find dispersion relations like (12) for both M(v) and m(v). On resonance this
rotating solution coincides precisely with McCall and Hahn's. (b) For larger n (~ 10")we obtain three
coupled, rather than two independent, relations for M(v) and m(v). In general these are incompatible
and envelopes like (10a) and (13) then cease to be acceptable solutions.

We remark also that there are exact solutions of (I) and (2) which depend on the Jacobian elliptic
function dn: Among these is an obvious dc solution. We shall report these solutions later.
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