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Resonant Light Scattering by Single-Particle Electronic Excitations in n-GaAsf
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Resonant light scattering by single-particle excitations was observed in n-GaAs with
incident photon energies near the Ep+&p optical energy gap. %'e find that under extreme
resonance conditions the spectra have two components with the scattered light polariza-
tion perpendicular and parallel to the incident light. These results are interpreted in
terms of a random-phase-approximation theory-

We have observed resonant light scattering by
single-particle electronic excitations (SPE) of
n-GaAs in spectra excited with radiation having
energies close to the optical F.,+ 6, gap. This
energy gap can be made almost equal to the en-
ergy of the laser photons by an appropriate
choice of the electron concentration. The pos-
sibility of resonant Raman scattering from the
electron gas of semiconductors via intermediate
photon-induced interband transitions was first
suggested by Wolff' and is implicit in the calcu-
lations of Hamilton and McWhorter' and Jha. '
In the pioneering work on n-GaAs by Mooradian'
the spectra were excited with photons having
energies (1.17 eV) appreciably smaller than the
E, gap (-1.51 eV). Resonant Raman scattering
by SPE was observed in n-CdS by Scott and co-
workers. ' The results we present here were
obtained under extreme resonance conditions for
which E(n) —8&@,= hqv 'F, where E(n) is the E,
+ 6p gap at electron concentration n, co, is the
frequency of the incident photons, q is the scat-
tering wave vector, and v F is the Fermi velocity
of the electrons.

The low-temperature spectra of SPE have two
polarization components: component I, in which
the scattered light has polarization perpendicular
to the incident light; and component II, in which
the scattered light has polarization parallel to
the incident light. Component I was observed by
Mooradian' in n-GaAs and has been assigned to
spin-density fluctuations of the electron gas.
Component II is very weak in Mooradian's low-
temperature spectra because the SPE that origin-
ate this component are charge-density fluctua-
tions which, for the wave vectors involved in
light-scattering experiments, are screened by

electron-electron interactions. Component II
appears in the higher-temperature spectra and
has been accounted for by the temperature de-
pendence of resonant denominators. ' Compon-
ent II was absent in the low-temperature spectra
of n-CdS. '

In our low-temperature spectra obtained under
extreme resonance conditions we found com-
ponents I and 0 with about the same intensity.
This result indicates that under these conditions,
the SPE contributing to component II are no
longer equivalent to pure charge-density fluctua-
tions but have a more complex character and
therefore are not completely screened by the
Coulomb interactions of the electron gas.

Spectra were obtained from (110) cleavage sur-
faces using a back-scattering geomet~, and
the samples were cooled in a low-temperature
Dewar by a stream of cold He gas. Two excita-
tion sources were used: the 6328-A (1.96-eV)
emission from a He-Ne laser and the 6471-A
(1.92-eV) emission from a Kr' laser. In order
to reduce its power density, the incident radia-
tion was focused into the sample surface with a
cylindrical lens. The penetration depth of this
radiation inside the crystals is -3000 A, ' much
larger than the width of their surface space-
charge regions. The E,+ 6, energy gap is locat-
ed, at low temperatures, between 1.85' and
1.88 eV." Samples for which we have obtained
good spectra have Fermi energies ranging from
0.02 to 0.14 eV. Therefore, the carrier-density-
dependent optical Ep+ Ap gap of the samples can
be adjusted between -1.87 and -2.0 eV to match
closely the energy of the incident photons.

Figure 1 shows spectra obtained from a GaAs
sample with n = 1.3 & 10" cm ' using the 6471-A
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FIG. 1. Light scattering spectra of SI'E and coupled
longitudinal phonon-plasmon modes (at L and L+) in
GaAs for n =1.3 &&10 cm at 10'K. The dashed line
represents the estimated luminescence background.

(1.92-eV) line. The spectra show components I
and II with about the same intensity. That these
spectra are due to SPE is demonstrated by the
cutoff (smeared by collision broadening) near
qv„. The values of qe~ for our experiments are
larger than those in Mooradian's because our
scattering wave vector (q= 7 x10' cm ') is about
three times larger. As a consequence, the wave
vector dependence of the plasma frequency had
to be considered to explain the observed values
of the frequencies of the coupled longitudinal
phonon-plasmon modes. ' In Fig. 1(b) these
modes appear at w = 265 cm ' and w, = 420 cm '.
Figure 2 shows the spectra obtained from a sam-
ple with n = 2.03 x 10" cm ' using the same ex-
citation. The spectra show only component I of
the SPE, and Fig. 2(b} shows &u =270 cm '
while w, is absent. The luminescence back-
grounds in Figs. 1 and 2 are completely differ-
ent. The luminescence background" in Fig. 1
is due mainly to the Eo+ b o gap. This lumines-
cence is not excited in the spectra of Fig. 2 be-
cause the gap at n=2.03x10" cm ' is larger
than the energy of the laser photons. The shape
of the luminescence in Fig. 1 was estimated
from the spectra obtained from a sample with
n = 3.55 x 10"cm '. In the spectra of Figs. 1
and 2 the intensities of the scattered light and
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FIG. 2. Light scattering spectra of GaAs for ~ =2.03
&1018 cm 3 at 10 K.

the luminescence are weak. This is due to the
small skin depth which is determined mainly by
transitions from highest-energy valence bands
to the conduction band.

We have also obtained spectra from samples
having n=3. 55x10" cm ' and 5.1x10"cm 'with
the 6471-A (1.92-eV) excitation; in all cases the
SPE spectra are much weaker than those ob-
tained from the n= 1.3x10" cm ' sample. The
intensity of component I in the spectrum of Fig.
2(a) is about an order of magnitude smaller than
that of Fig. 1(a). The SPE are absent in spectra
obtained from these samples with the 6328-A
(1.96-eV) excitation. However, with this excita-
tion we obtained strong spectra from a sample
with n=4. 8 x10" cm ' for which extreme reso-
nance conditions exist again. Of a11 the samples
that we have studied with a 6471-A (1.92-eV}
excitation, the sample with n=1.3x10" cm ' is
the one which has the largest resonance enhance-
ment.

The most interesting result from the point of
view of the microscopic mechanisms which are
responsible for the scattering of light, as shown
by Figs. 1 and 2, is that the intensity of compon-
ent II is more dependent on the resonant enhance-
ment than the intensity of component I. In fact,
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the appearance of component II in the low-temperature spectra is a direct consequence of extreme
resonance conditions. The cross section for light scattering by the electron gas within the random-
phase approximation (RPA) is given bym ~

Im M, q 0 k+q t„k ~~„',
1

where co, and u, are the incident and scattered frequencies, Q= w, —w„r, is the classical radius of
the electron, and

f(k+q) V(k)
e(k+ q) —e(k} —KQ'

the e(k) are one-electron energies in the conduction band at wave vector k and f(k) is the Fermi dis-
tribution function at e(k). The dielectric constant of the electron gas is given by

e(q, Q) =1 —(4ve'/q')Q, M(k, q, Q).

For component II of the spectra, at resonance we have the following expression for the scattering
amplitude:

(k+ qif„ik)„„ 1 2we' +M(k', q, Q) ~ M(k', q, Q)
E(k+ q} —K(u, q'e(q, Q) g E(k') R(u-, g E(k') —S(o,

where e, and e, are unit polarization vectors of the incident and scattered light, (c lplv) is the interband
matrix element of electron momentum, and E(k} is the energy gap at wave vector k. The possible
values of k are restricted by the conservation of wave vector and the Pauli principle. The second and
third terms in Eq. (4} are due to the Coulomb interaction between the electrons and are absent in the
scattering amplitude for component I of the spectra.

Under nonresonant conditions, E(k) —ku&, = E(k) —S&u, »hQ and (k+ ql t»IR) Rp„are independent of k.
Under such conditions, the SPE making a contribution to component II of the spectra can be consid-
ered as charge-density fluctuations. The screening effects of the electron gas are predicted by Eq.
(4) because the first term is almost canceled by the other two. As resonance is approached, the k
and k' dependence in the denominators of Eq. (4) cannot be neglected and a cancelation no longer oc-
curs. The SPE which are excited under these conditions are not equivalent to pure charge-density
fluctuations. The dependence of these effects on resonance conditions can be studied by expanding the
resonant denominators in series of the type

1 1 E(k+ q) —E(k'}
E(k') —S(u, E(k+ q) —8'u), [E(k+ q} —R(u, ] (5)

1 1 RQ E(k+ q) -E(k')
E(k') —h&u, E(k+ q) K&u, [E—(k+ q) —K&o,]' [E(k+q) —k~, ]' (6)

When expansions of this type are inserted in
Eq. (4), the terms which will give a contribution
not screened by the dielectric constant of the
electron gas will be proportional to powers of the
resonant denominators which are larger than 1.

The scattering amplitude of component I is
proportional to the first power of the resonant
denominators. Therefore, on the basis of Eqs.
(4), (5), and (6) a stronger dependence on reso-
nance conditions is predicted for component II.
This is in agreement with the results shown in
Figs. 1 and 2. Equations (5) and (6) show that
component II will have an intensity comparable
to that of component I when E(k+ q) —5&v, = E(k+ q)

-E(k') and E(k+q) -K~, =KQ. The conditions
define the regime of extreme resonance as that
for which E(n) —k&u, =kqvF.

Under extreme resonance conditions, expan-
sions like those of Eqs. (5}and (6) are expected
to give only qualitative descriptions, and in ad-
dition there may be contributions from real
interband electronic transitions. Therefore, it
would be desirable to have a more rigorous
theory of resonant light scattering by SPE.
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We have measured the "forbidden" (222) reflection of neutrons from silicon between
15 and 1353 C. We have used these measurements to correct the x-ray (222) structure
factor for the anharmonic motion of the atoms. The scattering from the anticentrosym-
metric valence charge density obtained in this way is found to be less temperature depen-
dent than that from the core. We take this as evidence of the failure of the rigid-ion
model.

We report in this Letter success in detection of
the "forbidden" neutron (222) reflection and mea-
surement of its absolute intensity from room tem-
perature to 1350 C. We present the results of
these measurements and the conclusion to be
drawn from them. A more detailed description
of the experiment will appear elsewhere. '

The (222) structure factor (as well as any re-
flection for which 0 + k + / = 4n+ 2, where n is an
integer) would be identically zero if two silicon
atoms in the unit cell had a centrosymmetric dis-
tribution of scattering matter. The two silicon
atoms lie on two fcc lattices (denoted A and 8)
separated by & of the cube diagonal. The sites of
these two lattices both have T~ point symmetry,
but the sites on B differ from those on A by in-
version symmetry. For quadricovalent silicon,
tetrahedral orientation of bonds is expected with
3s-3P hybridization. ' The tetrahedral hybrid
from the A site is able to overlap strongly with

the oppositely directed hybrid of the B site, giv-
ing strong bonding and a net charge density that
is anticentrosymmetric with respect to either
site. This has long been recognized as the ex-
planation for the otherwise forbidden reflections
observed in diamond structures. ' A recent x-ray
measurement' gives E(2, 2, 2) =1.46+ 0.04 for sili-
con.

However, another possible cause for site asym-
metry can exist in diamond structures. Because
of its tetrahedral environment, each atom sees
a nearest neighbor in one direction and a "hole"
in the opposite direction. At high temperatures,
we might anticipate that an atom spends more of
its time making excursions toward the hole than
toward its neighbor. This anharmonicity in atom-
ic motions would create a time-averaged asym-
metry, also tetrahedral, in the nuclear distribu-
tion. When considered together, anharmonic mo-
tion of the core charge and distribution of bonding
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