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A rigorous microscopic analysis of a weakly interacting Bose gas at zero temperature
shows that the elementary excitation spectrum ~(k) is not an analytic function of the
wave vector k in the long-wavelength limit but has the form k jco+c&k +c~4k ln(1/k) + ~ ~ ~).
It is pointed out that the structure factor S(k) is not an analytic function of k and that the
specific heat C„(7') at low temperatures T has the form C„=T )C&+C2T +Cz 4& ln(1/T)
+ ~ ~ ]. The extension of these results to liquid He is discussed.

Many theoretical' and experimental' investiga-
tions of superfluid helium have been based on the
assumption that the elementary excitation spec-
trum &d(k), the structure factor S(k), and other
functions can be expanded in a power series in
the wave vector k. It is also assumed that the
specific heat C„(T) can be expanded in a power
series in the temperature T. Since this assump-
tion of analyticity has not been given a firm theo-
retical basis for liquid He', a rigorous micro-
scopic analysis of a weakly interacting Bose gas
would be instructive.

We consider a weakly interacting gas of spin-
less mass-m bosons at density n and zero tem-
perature. The two-body force between a pair of
bosons is assumed to be short ranged and sum-
marized by the s-wave scattering length' a. The
small dimensionless parameter in the model is
g=47(ams„where so =(4vna}'"/m is the phonon
speed in the zeroth (Bogoliubov} approximation
(we take 5=1). The natural units for momentum
and energy are respectively ms, and mso', and
in these units (which will be used hereafter} m

=so=1, g=4ma=n '. The elementary excitation
spectrum ~(k} can be analyzed in an expansion
in powers of g. The main result is that &v(k) to
O(g) is nonanalytic in k:

~(k)/k = co+ c~k'+ c«k' ln(1/k) + ~ ~ ~,

where

c, = 1+7( 'g+0(g'),

c2 =
8

—
90 Z g + 0(g ),

c~, ——,~v 'g+0(g').
The mechanism of propagation in the long-

wavelength limit is dominated by the interaction
(even though it is assumed to be weak) and is
conveniently described in terms of a generalized
dielectric function" e(k, (d). Because of the
presence of the condensate, the elementary ex-
citation spectrum (d(k) can be obtained from the
equation c =0, which may be cast into the form

(d'/k' = (u/g) [1 +gE "(k, (d) ], (3)

~2 ~2(o) +g~2(1) + O(g)

U/g =1+gU'" + O( g'),

gE33 E33(0) +g[E33(1)+ (d2(j)sE33(0)/()&2]

+ O( g'),

(4)

where all quantities on the right-hand side of
(4) are evaluated at &u'('). In zeroth order, E' ('
= —,'k'(&u' ——,'k') ' and the well-known Bogoliubov
spectrum &u„(') = k(1+ -', k')'" follows from (3) and
(4). In first order, we have from (3), (4), and
the explicit form of F"'"

2( 1)/k 2 ~ ( 1) + (1 + 1 k 2) 1E38( 1)

A common feature of the various quantities in
first order is that all the relevant diagrams have
a one-ring structure, as shown in Fig. 6 of Ref.
4. We evaluate the contribution of these dia-
grams in the standard way and find

where v is the interaction taken to be a constant,
and F" is the irreducible part of the longitudinal
current response function' that contains no isolat-
ed single-interaction line.

We develop a perturbation expansion for (d(k)
by expanding all terms in (3) in powers of g:

E33(1) 1 (3(1)+M (1) ~(l)) (I I k2)1/2(P 3(l) + A 3(1)) ~ 1k(A 3(1) g 3(1)) + 1k(1 1 k2)l/2~(1)

+ & y2($(&) p(&)) +F33~(&) & $2pg (&)+g i —P r+ 7 (6)
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where

v('& = — S +M, —g = 3~ P~P+P'Q
d P ~ (1) (1) (x) +

(2v)3 p21 (2&1

3(1) p 3(1) — p
(p p )(p k + 1 k) Q i1 3(» )11 3(» =— -1 (p k + —,k) Q

1 "d' --, 1 d +

2. (21r)' ' "" '' ' ' 2 (")' 3+3

~(1) -
Jt

~ g Q S('& )1(') =— + +I+2X3X3~3 Q
d3p, 1 d3P 1 —Ap +

(2rr)3 3 ' 4 (2rr)

33'(1)1dp(X3-13,3)k,k, (1),"p)-1(1),)
3 )2 f de

8. (2)1)3 X3A. 3+3
' ' 4~ (»)'

(& (O) & (O) & (O)) -1 + (& (O) + & (O) + ~ (O)) -1

lp(1 ~ 1p2) 1/2

Since we are interested in the elementary ex-
citation spectrum ~(k) in the long-wavelength
limit, we expand the integrals in (7) in powers of
k. As an example, consider the expansion of the
integral A(»:

A ' =a,k+a, k'+a3k'+ ~ ~ ~,

where
1td'p i, 1
2J (2(1)3 (1) "" 2)12'

d3

(10)

S(k) = (k/2c3) [1+S2k2+ Sz 3k4 ln(1/k) + ~ ~ ~ ] . (12)

In previous work' the leading temperature cor-
rection to the phonon speed c, was shown to be
O(T' ln(1/T)). It can be shown that the leading
temperature correction to the coefficient c, is
O(T'ln(1/T)). If we assume that the thermody-

It is easy to see that a, =0. Although the integral
a, converges for large p, it has a logarithmic
singularity for small p. Since (10) is an expan-
sion in powers of k/p, we cut off the logarithmic
singularity at k and obtain a3 = —(1/48rr') ln(1/k}
+ regular term. Since only the singular term is
of interest, this procedure is well-defined. The
other integrals in (7) may be treated in the same
manner. The large-P divergences in the inte-
grals v('' $(»+ M (» —p(» and S(» —p(j~ arise
from the point nature of our model interaction
and they all cancel each other. Thus the coeffi-
cients c„c„and c~, in (1) are well-defined and
we obtain the values quoted in (2).

An analogous calculation of the structure fac-
tor S(k) to first order in g shows that S(k) is not
an analytic function of k about the origin and has
the form

namics of the Bose gas can be obtained from the
elementary excitation spectrum, we find that the
specific heat C„cannot be expanded in a power
series in the temperature but has the form

C„=T'[C, + C,T'+ C1,T' ln(l/T) + ~ ~ ~ ] . (13)

The logarithmic singularity in the elementary
excitation spectrum (1) !and also in (12) and (13)]
arises from the singularity associated with the
long-wavelength limit of the product of two sin-
gle-particle propagators. Ma' has shown that
absorption and emission processes based on this
long-wavelength two-propagator singularity can
support second sound at low temperatures.
Therefore in a Bose gas to leading order in g,
the nonanalyticity of the elementary excitation
spectrum and the appearance of second sound
have their basis in the long-wavelength two-prop-
agator singularity.

We now give an argument to indicate to all or-
ders of the perturbation expansion that (d(k) for
a Bose liquid is not analytic in k. Define F'" as
the part of F" that has an isolated pair of single-
particle lines. It is straightforward to see that

d4
, (p k+ -', k)'I'9 ( p) 8 (p+k)-, (14)

where p = (p, e), k = (k, (d), the first factor p k
+-,'k arises from the longitudinal current, g is
the amplitude response function, ' and the vertex
function I' is determined by the Ward identity I'
= s8 '/8&1). Gavoret and Nozieres' have shown to
all orders in perturbation theory that in the long-
wavelength limit (1 ' =(n/n3mc2)((1)' —c2k'+i()),
where c is the macroscopic sound speed, and
thus l -k in the long-wavelength limit. An evalu-
ation of (14) shows that F33' contains a singular
term proportional to k'ln(1/k). From (3) we see
that the appearance of a singular term in &u(k) is
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a general property of a Bose liquid.
Recently Phillips, Waterfield, and Hoffer'

have analyzed their specific-heat measurements
for liquid He' at low temperatures by fitting their
data by the form C„(T) =AT'+BT'+CT' in order
to determine A and B. The present work sug-
gests that a term proportional to T' ln(l/T) might

also be present. Although such a term appears
to be too small to measure directly, its neglect
might affect the value of B determined by a fit to
data in a fixed temperature interval.

We wish to thank Shan-Keng Ma and Wayne
Saslow for useful conversations.
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The resUlts of Glaberson and Steingart on vortex-core radii at low temperatures are
analyzed from the point of view of a quasithermodynamic theory and found to be in agree-
ment with the theory.

In order to understand the nature of super-
fluidity in liquid He II, it is useful to examine
those physical conditions under which the super-
Quid behavior breaks down and particularly those
cases in which one can see the transition from
superfluid to normal-fluid behavior. An example
of such a possibility is the study of the core of
the line vortices occurring in rotational motion
of helium. At some distance r, from the vortex
axis (the core parameter) the superfluid proper-
ties must break down; this breakdown has its
consequence, for example, on vortex-ring kine-
matics. By investigating the kinematics, esti-
mates can be made of the core parameter; re-
cently such measurements have been reported
for the temperature range between 0.35 and
0.6 K. '

It is the purpose of this note to point out that,
using only a slight extension of ordinary ther-
modynamics, these results can be understood
without a detailed model of the core structure.
Since the arguments are very general, it appears
that very detailed investigations may be neces-
sary to support any specific model for the core

structure.
The argument is very simple. It assumes that

there is a transition region from bulk to core,
in which bulk thermodynamics is still applicable,
and in which a local effective temperature may
be defined. The high velocity of the superfluid
flow near the axis makes it thermodynamically
more economical to convert superfluid to normal
fluid, and thus to have a local effective tempera-
ture higher than the surrounding bulk liquid.
Arbitrarily an effective temperature some factor
P above the bulk temperature is used to define
the core parameter.

Using these ideas one can show' that the effec-
tive temperature ~ at a distance x from the axis
is given by the implicit relation

g' 7 ay
2C 7 —T &~'

where E is the vortex circulation, C is the spe-
cific heat, and y = p „/p.

In the temperature region in which Glaberson
and Steingart have done their experiments, the
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