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dictions.

In conclusion, we have shown that, depending
whether the quantity (lw, |- v,?/4D) is <0 or >0,
the instability of a semiconductor biased in the
NDM region will take either the form of a travel-
ing space-charge layer starting from a cathode-
type fluctuation, or of a stationary, high-field
layer initiated by an anode-type fluctuation. In
the first case, a Gunn diode would exhibit the
usual Gunn-effect behavior, whereas in the sec-
ond situation, it would switch from a high- to a
low-current stable state. The author is very
much indebted to Dr. P. Wolf and Dr. H. Thomas
for very stimulating discussions on the subject
of this paper.
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It is pointed out that the incorporation of band structure in the theory of elastic tun-
neling in metal-insulator-metal structures does not make an appreciable enough change
in the tunnel current to warrant its deduction from measured voltage-current data. It is
emphasized that if it is to be at all meaningful, the essential barrier parameters (effec-
tive work function, thickness, and effective mass) and the barrier shape must be con-
sistently and precisely specified. This has so far not been achieved.

Recently there have been a few attempts at de-
ducing the electron energy-momentum dispersion
relation”? in the forbidden energy region of insu-
lators and semiconductors from elastic tunneling
studies® in metal-insulator-metal*® (MIM) and
metal-semiconductor®® contacts. From the ex-
perimental plot of tunnel voltage current data,
the E (k) relation for an amorphous AIN thin film®*
was deduced to be approximately Franz’s empiri-
cal relation (by fitting it with the theoretical
curve). Recently Kurtin, McGill, and Mead®
have deduced the E (k) relation for a single-crys-
tal GaSe insulating film by taking the inverse
transform the equation of tunnel current which
involves the E (k) relation term explicitly in the

transmission probability, assuming some char-
acteristic (trapezoidal) model of electron tunnel-
ing.

We wish to point out in this regard that such
deductions from the voltage-current experimen-
tal data of MIM structures are not very meaning-
ful unless a high order of precision in barrier
parameters is ascertained uniquely and consis-
tently from independent estimates. The latter
point is very doubtful at this time, and perhaps
it will be extremely complex to accomplish.

This is because the change brought about in vol-
tage-current characteristics by invoking the non-
parabolicity term is not very appreciable com-
pared to the known uncertainties in the essential
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barrier parameters® (viz the effective work
function, thickness, and effective mass in the in-
sulator region), the effects of which are very
high. Hence it is more likely that the discrepan-
cy between theory and experiment lies in the un-
certainties in the barrier parameters rather than
in neglecting the actual band structure of the in- l

A nB .k, T

sulator (i.e., assuming it to be a simple para-
bolic relation).

Rather than resorting to the exact numerical
integration’® of the tunnel integral, we estimated
these changes from the following approximate
tractable expression, valid for the nonparabolic
E (k) relation'! of the type %#%k?/2m;=E +aE?, ob-
tained recently by the authors!?:

J = 167em; —lexp(—A\fAl)l:——"—n—][l -exp(-BeV)]

h3A? A, sin(7B,k,T)

nB kT

_[A—L—L—+nm /m'}exp[—A(A, +nm /m )] [——2“0"—}[1 —exp(- BeV)]i. (1)

Ao—mc/mi

In obtaining this expression we have used the av-
erage-barrier-height method!® for making it ana-
Iytically tractable. The various parameters ap-

pearing in (1) are

A=2(2m )2 0e,p - x,p)B/R, Ag=(1-2a9),
A,=(¢ —a9?®), B,=AA,/2VA,,
B, = %A(Ao - mc/mi)(Al +nmc/mi)-l/2-

@)

Here ¢ is the potential-barrier height above the
Fermi level of the negatively biased electrode as
a function of distance in the insulator region, and
the bar represents the average of the quantity in-
volved between x,r and x,¢ (¥, and x,; are the
classical turning points corresponding to the Fer-
mi level); 7 is the Fermi energy of the negative-
ly biased electrode; and B is a numerical factor
depending upon the barrier shape and generally
lies in between'® 0.95 and 1.0. The rest of the
symbols have their usual meaning.

To appreciate the influence of a nonparabolic
relation for E(2), we computed the tunnel current
[Eq. (1)] for Al-AIN-Al junctions assuming that
the empirical Franz relation"* represents a good
approximation of the true band structure [i.e., a
in Eq. (2) has been replaced by the inverse of the
forbidden energy gap)]. To have some idea about
the difference between parabolic and nonparabol-
ic cases, we assumed, typically, an idealized
trapezoidal barrier.'* Assuming the parameters
for the Al-AIN-Al junction'® to be E,=4.0 eV,
mi/m,=0.47, n=11.7 eV, ¢,=1.68 eV, ¢,=2.01
eV, thickness =20 .7&, we find that the tunnel cur-
rents in nonparabolic and parabolic cases differ
by nearly 2 orders of magnitude at an applied
bias of 1 eV. Since this difference is very small
and can be obtained even for parabolic cases with
small fluctuations in the insulator thickness,
work function, effective mass, etc. (while actual-
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I ly the fluctuations are much larger), we conclude
that the effect of a nonparabolic relation for E (k)
is not really very significant, particularly in
view of the other uncertainties.

It is worthwhile here to point out the reason,
already known, for uncertainty in the barrier pa-
rameters. Leaving aside a few cases of single-
crystal and muscovite mica films, the tunnel
junctions in general are prepared by either ther-
mal oxidation or plasma anodization.'® Since
these processes involve random deposition of in-
sulator atoms onto the parent metal, the thick-
ness of the film is nonuniform at least on an
atomic scale.’” This causes a wide difference
and uncertainty in the net thickness of the insula-
tor region. Further, because of different extents
of chemical contamination and characteristic
growth kinetics,'® the effective work function,
too, differs from sample to sample and labora-
tory to laboratory.® Finally, there is no defini-
tive technique’® available to deduce the electron
effective mass in thin films of insulators, espe-
cially for amorphous (e.g., ALO,) films. The
values which are used in calculations to date are
arbitrarily chosen (in the light of the value of
band gap) so as to fit the theory to experiments.2°
In addition, if the image force is also included in
the tunnel model, there is still a dispute®! over
the use of a static or optical value of the dielec-
tric constant of the insulator film.

Fortunately, these comments are not directly
applicable to single-crystal films (like that of
GaSe) where the major uncertainties in the work
function and thickness values are removed to a
great extent. However, in general, since the
agreement between the theory and experiments
is not unique?®? to the band-structure effect (in the
sense that it may be ascribable to other effects
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as well), such a deduction is approximate for sin-
gle-crystal films and unacceptable for amorphous
cases.

Finally, a general drawback of all band-struc-
ture deductions (for insulators and semiconduc-
tors) is that the charge-transfer mechanism has
not been convincingly shown to be due to tunnel-
ing only. Also the validity of the independent-
particle approach has not been fully established
as far as MIM structures are concerned. These
points together with the justification in using
WKB approximation have been discussed in detail
by Duke.?®
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