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High-Resolution Interband-Energy Measurements from Electroreflectance Spectra
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We present a new method for obtaining interband energies to high accuracy from elec-
troreflectance spectra taken under general experimental conditions. The method does
not require optical constants or a Kramers-Kronig analysis; hence it is particularly
suitable for new materials such as chalcopyrites, binary alloys, and amorphous semi-
conductors.

It is generaIly recognized that modulation
spectroscopy represents the most accurate
method presently available for determining tran-
sition energies of interband critical points, being
limited by the width of the line shape (typically
100 meV). ' For many purposes this accuracy
has been sufficient. However, recent band-
structure calculations, i.e. , the dielectric meth-
od' and improved one-electron techniques, ' have
achieved much higher accuracy. In this Letter
we present a new method of obtaining interband
transition energies, based on analysis of elec-
troreflectance (ER) spectra, which achieves
nearly an order-of-magnitude improvement over
the previous technique of assigning the interband
transition to the energy of a dominant peak.

Carefully controlled ER measurements have
been performed on only a relatively few sys-
tems. ' ' In the great majority of ER experi-
ments it has not been possible to obtain idealized
conditions for a variety of reasons. These in-
clude experimental difficulties such as obtaining
uniform, known fields and square-wave modula-
tion from the flat band or zero-field condition.
Other difficulties are intrinsic and involve the
electron-hole interaction and a detailed knowl-
edge of the optical constants of the crystal.
Nevertheless, experimental ER spectra exhibit
a relatively simple line shape which has both
positive and negative extrema, where the details
(i.e., the subsidiary oscillations of the Franz-
Keldysh line shapes) have been averaged out by
one or more of the above effects. These experi-
mental line shapes can be approximated quite
well by the predictions of a recent perturbation
treatment of ER,""which describes the modu-
lated reflectivity spectra aR/R as

~/R =Re(Ce' &e).

The field-induced change in the dielectric func-
tion, 6e, has the resonant form"

6~ —(E, —I~ if') ", n-~ 2.

The complications mentioned above act mainly
to determine the values of C and e in Eq. (1),
which we take to be slowly varying functions of
photon energy. For example, we show in Fig.
1 the least-squares fit of Eq. (1) with phase 8,
amplitude C, broadening I', and energy gap
E, taken as adjustable parameters for n = 3 for
the E, transition'2 on a well-characterized ER
system: the room-temperature, aqueous elec-
trolyte-Ge interface. ' Figure 1(a) represents
the weak-field limit, where the experimental
difficulties mentioned above have negligible ef-
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FIG. l. Least-squares fit of theoretical electrore-
flectance line shapes to experimental data at the funda-
mental direct edge of Ge for (a) low and (b) high fields.
The values of the surface fields are sho~n. Note
changes in scale between (a) and (b) . The energy gap
is K~=797+2 meV in both cases.
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fects. Figure 1(b) represents the same system
at very high fields, where field inhomogeneity
effects dominate the line shape. '~ The two line
shapes represent changes of 154' in the phase
6), a factor of 4 in the broadening I, and a fac-
tor of 100 in the amplitude C; yet the energy
gap E, differs by less than 3 meV, and the same
theoretical line shape ~e fits both spectra rea-
sonably well. This remarkable invariance of
E, is also observed for all intermediate fields:
Its value in every case was 797 + 2 meV in spite
of the large changes in the other parameters.
This suggests that a least-squares fit of the
simple theory of Eq. (2) to ER experimental line
shapes is sufficient to determine interband ener-
gies to high accuracy.

Since the best-fit parameters depend primarily
on the base line and the two dominant peaks, it
is expected that a simple three-point fit of theory
to experiment will be sufficient to determine E,.
If we define the three-point ratio p as

p = —AR~/b. R„,
where A and B are the lamer- and kggher-energy
dominant peaks, respectively, of the b,R/R
spectrum, then the position of E, with respect
to the energy E~ of peak A is given uniquely in
terms of p:

E =E +r Ef(p)

where

The scaling parameter f(p) is plotted in Fig. 2
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FIG. 2. Three-point scaling parameter f'(p) as a func-
tion of the peak-amplitude ratio p for three values of
n discussed in the text.

for three different values of n in Eq. (2). The
value n =3, corresponding to a two-dimensional
critical point, "is a good description of three-
dimensional critical points with large mass
ratios" '8 p~/pr and fundamental absorption
edges modified by the Coulomb interaction. "
The values n = 2.0 and 2. 5 describe modulation
of discrete excitons and general three-dimen-
sional critical points, respectively. ""Since
the curves for all three values of n are nearly
the same, it is evident from Fig. 2 that E, as
determined by the three-point fit, is nearly in-
dependent of the physical model chosen to rep-
resent the transition. This fundamental require-
ment of any high-precision method used to de-
termine transition energies is the reason why

E, as determined from Fig. 1 is nearly invariant
at both low and high fields.

The three-point method should be particularly
useful in determining band gaps in new materials
such as chalcopyrites, binary semiconductor
alloys, layered compounds, amorphous mater-
ials, etc. , whose optical constants may not be
known. We illustrate this point by recalculating
the bowing parameter' C for the E, transition
of the binary semiconductor alloy GaAsy P„
from previously published electrolyte ER data. "
In Fig. 3, the deviation from linearity of the
transition energies E„determined by the three-
point method and by the previous technique of
assignment to the lower-energy peak E,(1), is
plotted as a function of Ix —0.5 l'". By scaling
the abscissa in this manner, the expected quad-
ratic deviation appears as two straight-line seg-
ments forming a V, as shown, for easy compari-
son of experiment to theory. It is seen that the
three-point transition energies result in signif-
icantly less scatter, determining C =400+20
meV, compared to the previous value of C =310
+ 80 meV." This more accurate value of C
should provide a better test of empirical~'" and
semiempirical" theoretical models of the band
structure of semiconductor alloys.

We have demonstrated that highly accurate
values of interband transition energies can be
obtained from ER data taken under a wide range
of experimental conditions. This approach has
the particular advantage that a Kramers-Kronig
analysis or the optical constants of the material
are not required; and, hence, the technique is
particularly useful for new materials. These
methods can also be used to obtain broadening
parameters under similar general experimental
conditions. Quantitative spectra, which enable

189



V+I.UMs 27, NUMszR 4 PHYSICAL REVIEW LETTERS 26 JUL+ 1971

20

pp
E

60

80

t00

0
GaAs

I

0. 1

I I ili I I

0.3 0.7
I

0.9 10
Gop

the phase angle 0 to be determined, can be used
to obtain in addition the strength of the electron-
hole interaction, matrix elements, and critical-
point type. These extensions of the theory are
the subject of a future publication.
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