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al Heisenberg antiferromagnet with no long-
-function equations in second order. Results

ent is obtained with Fisher's classical so-
a in (CD3) 4NMnC13.

compatible with spin-wave dynamics? At first
glance they are quite incompatible, as we discuss
below. The major thrust of this paper, apart
from giving a simple derivation of the spin-wave
spectrum, is to show that the static correlations
do fit nicely into the framework of spin-wave the-
ory and that our solution is identical to Fisher's
for the observable parameters of quasielastic
scattering in the low-temperature limit.

The apparent incompatability of the spin-wave
and classical descriptions stems from the form
of (S, ~ S,) implied by the two theories and has
been noted previously. ' The classical solution
gives

with u = cothK —1/K and K = 2ZS(S + 1)/k B T, where,
in our notation, the exchange interaction J is pos-
itive for antiferromagnetic coupling so that Q is
positive for the case of interest. The quantity a
is the nearest-neighbor spacing and J is assumed
to be confined to the two nearest neighbors on a
linear chain. Equation (1) predicts maximum cor-
relation at q= v/a, the same a.s for an ordered
antiferromagnet and as confirmed by quasielastic
neutron scattering. ' For small q = v/a —q, a
Lorentzian

(S ~ S,) ~(q'+ v')

results with the inverse correlation length z given
by

~ = (1—u) /v u a.

The staggered (q = ~/a) susceptibility is thus finite
at nonzero temperature.

Spin-wave theory for a one-dimensional anti-

The spin-wave spectrum of a one-dimension
range order is derived by decoupling Green's
are applied to static correlations, and agreem
lution and quasielastic neutron-scattering dat

We derive here a temperature-dependent spin-
wave spectrum for the isobvopi, c one-dimensional
Heisenberg antiferromagnet with no long-range
order. The results are then applied to the static
correlation function (S, ~ S,) as measured in qua-
sielastic neutron scattering' (S, is the spatial
Fourier transform of the spin S; at the lattice site
r,.), and it is shown that the exact classical solu-
tion' is reproduced at low temperature. Our spin-
wave spectrum is identical in form to that for the
ordered antiferromagnet' at zero temperature and
thus is in agreement with recent observations4 in
(CD,),NMnC1, (TMMC). Hence, this Letter recon-
ciles the existence of well-defined spin waves
with static correlations given by the classic mod-
el, both of which have been verified by neutron
experiments on TMMC.

The experiments on TMMC have received much
attention since they have shown that the idealized
one-dimensional antiferromagnet is realized in
practice, and a sensitive test of one-dimensional
theories is thus possible. Briefly, results are in
accord with Fisher's theory of static correlations
for S-~ and also demonstrate the existence of
well-defined spin waves. These spin waves have
the same dispersion relation as for an artificial
one-dimensional antiferromagnet with long-range
order, even though such order is absent in TMMC.
Computer solutions to approximate integrodiffer-
ential equations for classical spins' and to finite
spin-2 chains' have produced spin waves at finite
temperatures, and the zero-temperature spec-
trum' is known for spin 2; but we know of no
work prior to this which gives simple analytic
expressions valid for finite temperature and arbi-
trary spin.

The discovery of spin waves in TMMC has
posed an apparent dilemma. How can the static
correlation functions of the classical theory be
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ferromagnet with long-range order predicts"

(S„S,) = 4JS'(1 —cosqa)(2n, + I)/K~, (4)

=0 for the classical system so that

m, (0) = (4J/5) [~8(8+1)]'~ sinqa.

+(s, 8, ,)8, ,5, ,

This procedure yields

G,t'((u) = —(u, 'G, t"(u)),

for the frequency-dependent function in which

n'~, 2= —',68(S +I)J'(1+7,)

(6)

x [1—cos'qa +x(cos'qa —cosqa) ], (7)

where A. = (1+2r, + v,) /(1+ T,), and isotropy has
been assumed. The quantities 7, and 7, are nor-
malized first- and second-neighbor correlations:
~, = (S, ~ 8;+,)/8(8+1). The exact classical solu-
tion has v, = —u, T, =u'. At zero tempera-ture A.

for the transverse correlations, where n, =[exp(h
&&(u, /kBT) —1] '. The spin-wave frequency is
&u, = 4(Z/S)8 sinqa. It is evident from (4) that a
maximum occurs at q= ~/a=q„but (8, +8, )

~
Qp+ Qp—and thus the staggered susceptibility —diverg-

es at all temperatures so that the correlation
length z ' is infinite at all temperatures.

The key to the difference between Eqs. (1) and
(4) is the fact that simple wave theory gives &u,

=0 at q = v/a. An energy renormalization which
is wave-vector independent will not change this
result. The spin-wave spectrum derived below,
however, shows a renormalization which depends
on q. In particular, we find ~, fx T. This givesCp
rise to a finite staggered susceptibility and leads
to the form (2) with the same value for v as in (3)
in the low-temperature limit. The correlation
(8, ~ S, ) is also shown to have the same temper-

@0 cp
ature dependence as predicted by the classical
model (1).

Calculation of the spin-wave frequency pro-
ceeds by decoupling Green's-function equations of
motion in second order. The Green's function
G,(")(t) is defined in the usual way' as

G,'"'(f) = —([d"8, (&)ldf", 8, (0)])~(&), (5)

where e(t) is the unit step function.
Since there is no long-range order, it is not

fruitful to decouple in lowest order [G,~'i(&u)
- (S,)G,~' (~)]. Second-order decoupling' is pos-
sible according to the scheme

In the limit 8-~, &u, (0) is less than the Anderson
value (4J/K)ssinqa by the factor W&, but for S= T,
the factor is v'g =0.965, so the result (6) is very
close to the ordered spectrum for TMMC.

Equation (7) shows cu, to be temperature de-
pendent. This produces a relatively small re-
normalization of long-wavelength (q (m/2a) spin
waves and, more important, makes ~,40 at Q'0

= v/a. The renormalization is 6.5% for q = v/8a
at T = 20 K in TMMC, perhaps in reasonable ac-
cord with the failure' to observe any temperature
dependence of (d, up to 20 K. At qp the frequency
is

~, = 4[~28(8+ 1)]'i'(J/a)(I —u)

=2v ~k, T/[8(8+ I)]"'a (9)

where the classical values for 7, and 7, have been
used. The linear temperature dependence ex-
pressed in (9) is an excellent approximation for
all temperatures of interest since corrections
are of the order of e 2+=8 ' at T= 40 K jn
TMMC. As a result, n, is independent of T. TheQp
decoupling (6) enables one to solve for G, ') (&u).
The static correlation (8,+8, ) is then determined
by standard spectral-density theorems. ' We find

(S, S,)=4Jir, iS(8+1)
x (1 —cosqa)(2n, + I)/k&u, (10)

after using isotropy [(S,~ S,) = &(8,+8, )]. Use of
(9) in (10) then gives

(S, ~ S, ) = 4tuV ~[8(8+I)]' '
&& coth[~8(8+ 1)]"'/k BT (11)

for the classical value Ty= —u. In the limit of
large Sand T-O, the above reduces to (8,, S, )
=6JS'(8+1)'/k BT which differs from (1) only in
the coefficient of t, which is 4 for the exact
classical solution. The discrepancy of a factor
of ~ does not, of course, affect the experimental-
ly observable temperature dependence of (S

Qp
~ S, ). Figure 1 gives a comparison between

0
Eqs. (11) and (1) for the temperature dependence
of (S, ~ S, ), proportional to the inverse of the0
peak quasxelastic scattering intensity. The curves
are normalized to give the same slope at T-O.
Data from Ref. 1 are also shown.

The correlation length z ' is determined by ex-
panding Eq. (10) to lowest order in q = v/a —q and
comparing the result with the form (2). In this
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FIG. l. Inverse static correlation (S, ~ 6 ~) ' at@0
=w/a. Solid curve is spin-wave theory, Eq. (ill.
Dashed curve is exact classical result, Eq. {1). Curves
have been normalized to give the same slope Bt g =0.
Experimental points are from Ref. 1.

way we obtain

I +gg) 2" I +K(u
(~a) '=-

k, r sinh(k(u, /k, T)

I + 3R(u„
6 ksTsinh(5u, /ksT)„'

For large S and T-O, Eq. (12) gives identically
the same value for v as the classical model (3).
There is only a 2% difference between (12) and (3)
for S = ~ and T-0. Figure 2 shows the inverse
correlation length z vs T for TMMC as given by
both by spin-wave theory (12) and the exact class-
ical result (3). Data from Ref. I also are pre-
sented.

Data in both figures favor the classical model,
but the spin-wave curve nea, rly lies within the
error bars. A more rigorous theory for the tem-
perature dependence of ~, might be expected to

Cp

give better agreement with the classical model at
the high temperatures.

In Figs. I and 2 the value J/k s = 7.7 K has been
used in accordance with quasielastic results of
Ref. 1. Hutchings et al. ' deduced J'/k s = 6.6 K
from the measured dispersion relation K&u, /ks
= 4S(7.07) sinqa and the theoretical expression
Scu, = 4JS(1.07) sinqa based on spin-wave theory
for an ordered antiferromagnet including correc-
tion terms. Our relation (6) together with the ob-
served spectrum gives J/ks = 7.3 K so that better
consistency is obtained between the two neutron
experiments. The neutron-data values remain
significantly above the figure' of J/ks = 6.47 K in-
ferred from static susceptibility measurements. "
This discrepancy might have to do with the tem-
perature dependence of J since the susceptibility
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FIG. 2. Inverse correlation length K. Solid curve is
spin-wave theory, Eq. (12). Dashed curve is exact
classical result, Eq. (3). Experimental points are
from Ref. 1.
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data were analyzed between 170 and 60 K.
In conclusion, we have demonstrated that a

simple second-order Green's-function decoupling
scheme gives rise to a spin-wave spectrum which
agrees with the inelastic neutron scattering data.
It has not been necessary to assume the existence
of long-range order. Perhaps more significant is
the fact that this spectrum also is able to explain
quite well the quasielastic data on temperature
dependence of (S, ~ S, ) and the absolute value and

Qp Qp

temperature dependence of correlation length K

It had previously been thought that spin-wave the-
ory could not account for these features; and in-
deed it cannot unless a wave-vector-dependent
renormalization is used, such as naturally occurs
in our formalism. This renormalization has the
physically attractive feature of making the stag-
gered susceptibility finite at finite temperature.
The simple approximation employed here does
not a,liow for damping effects. A more detailed
calculation, such a,s undertaken by McClean and
Blume, ' is necessary to account for broadening
of the spin-wave peak at higher temperatures.
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Neutron-scattering experiments on Nb3Sn show the drastic softening of the j110] acous-
tic shear modes as well as an unusual frequency response (a central peak in addition to
the phonon side bands) near the phase transition at 45'K. A model involving coupling of
the bare phonon to other fluctuations with a Debye-like frequency spectrum is proposed
which correctly describes the observed cross section as a function of temperature.

The structural phase transition in the high-tem-
perature superconductor Nb, sn is characterized
by a drastic softening' of the acoustic shear mode
with vector qll[110] and polarization vector e II[110].
At the transition temperature T =45'K, the crys-
tal structure changes from a cubic to a slightly
distorted tetragonal structure. ' In a recent neu-
tron-diffraction study, ' we have determined the
atomic displacements in the tetragonal phase and
concluded that only an acoustic instability (not an
optic one) is required to explain the transition. '
This paper reports some unusual dynamical char-
acteristics of these soft shear modes revealed by
inelastic neutron-scattering techniques.

Experiments were carried out on a triple-axis
spectrometer at the Brookhaven high-flux beam
reactor on the same single crystal used in our re-
cent study. ' The crystal was grown by Hanak and
Herman' and has a volume of 0.05 cm', small for
inelastic neutron-scattering experiments. Bent-
focusing pyrolytic graphite monochromator crys-
tals were used with incoming neutron energies of
40, 14, and 5 meV.

The temperature dependence of the [110]trans-
verse acoustic (TA) branch is shown in Fig. 1.
First we note a relatively large decrease of pho-
non energies on cooling for high & values. Here
the wave vector q is expressed as (P, $, 0)2m/a.
This decrease, about 15%, persists up to the
zone boundary, f =0.5. A similar decrease was
also observed for phonons in the [100] transverse
branch; for example, the phonon energies at the
zone boundaries are 7.5 and 6.5 meV at 295 and

46'K, respectively. Thus, there seems to be a
substantial softening over the entire range of
wave vectors. This is unexpected and not at all
understood at present.

Much more drastic softening was observed for
the [110]branch for smaller 0 values. The gen-
eral characteristics of the temperature depen-
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FIG. 1, Temperature dependence of TA modes along
q = {t;,t', 0}2wla with polarization vector ell[lTO]. 2~/a
=1.19 A at 46'K.
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