axis, mainly because of a small population of trapped particles. This also fits the observation of the high-temperature region near the magnetic axis in ST^4 .

The experiment with the dc octupole⁵ showed that the diffusion is collisional at high densities $(n > 10⁹$ cm⁻³). The measured diffusion coefficient is approximately the classical value inside the separatrix. The value is much larger outside of the separatrix where $\langle \Delta \psi^2 \rangle$ is expected to be large. More detailed measurements are underway to determine the scaling on the magnetic field.

In summary, a model is proposed to explain the experimental observations of the anomalous transport processes in Tokamaks and multipole devices. Since this type of transport is only weakly dependent on the magnetic field strength, a large fusion device must be carefully engineered to minimize the magnetic perturbations.

*Work supported by the U. S. Atomic Energy Commission under Contract No. AT(04-3)-167, Project Agreement No. 38.

¹A. A. Galeev and R. Z. Sagdeev, Zh. Eksp. Teor. Fiz. 53, 348 (1967) [Sov. Phys. JETP 26, 233 (1968)]; L. M. Kovrizhnikh, Zh. Eksp. Teor. Fiz. 56, 877 (1969) [Sov. Phys. JETP 29, 475 (1969)]; P. H. Rutherford, Phys. Fluids 13, 482 (1970).

 2^2 M. Yoshikawa, T. Ohkawa, D. M. Meade, and T. Jernigan, Bull. Amer. Phys. Soc. 15, 1454 (1970).

 $3T.$ Jernigan, J. Rudmin, and D. M. Meade, Phys. Rev. Lett. 26, 1298 (1971).

⁴D. Dimock *et al.*, Bull. Amer. Phys. Soc. 15, 11, 1417 (1970) .

 5 T. Ohkawa et al., Phys. Rev. Lett. 24, 95 (1970).

Isotopic Impurity Tunneling in Solid ${}^{4}He^{\dagger}$

A. S. Greenberg, W. C. Thomlinson, and R. C. Richardson Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14850 (Received 3 June 1971)

A study has been made of the motion of isotopic impurities in solid ⁴He. The tunneling frequency of 3 He atoms with neighboring 4 He atoms in the 4 He lattice has been deduced from nuclear magnetic relaxation measurements. The volume variation of the 3 He- 4 He tunneling rate is much greater than that of the 3 He- 3 He tunneling rate (exchange).

Recent discussions by Andreev and Lifshitz, ' Recent diseassions by finance v and Efficients. have suggested the existence of a set of manybody excitations, called mass fluctuation waves, associated with the motion of isotopic impurities in solid-helium crystals. Because of the largeamplitude zero-point motion in quantum crystals, there is an overlap of the atomic wave functions of atoms occupying adjacent lattice sites which permits a mutual tunneling of the atoms through the potential barrier of neighboring atoms. The pairs of atoms rotate about the hard-core sphere of repulsion. At sufficiently low temperatures and with sufficiently dilute isotopic impurities, the tunneling motion permits the isotopic impurity to be distributed over a large number of lattice sites, and, further, the impurity atom propagates through the lattice with a well-defined wave vector.¹ The striking decrease in the spinlattice relaxation time T_1 which has been measured at low temperatures in ³He crystals doped with 4 He impurities⁴⁻⁶ has been analyzed in terms of the thermal reservoir associated with the

ne- he tunnering rate (exchange).
mass-fluctuation waves of the ⁴He atoms.^{2,7,8} In the present work we have attempted to detect the characteristic tunneling motion of isotopic impurities by studying the nuclear magnetic relaxation of ³He atoms diluted in ⁴He crystals.

Let us construct a simple theory to account for the relaxation resulting from the tunneling motion. We begin by assuming that the ³He atoms travel through the lattice by a random walk to nearest-neighbor positions with a mean time τ_{34} between steps. τ_{34}^{-1} is the tunneling frequency between 'He atoms and 'He atoms in the 'He lattice. The correlation function for the fluctuations in the nuclear magnetic dipole field will thus be an exponential decay with a "correlation time" τ_{34} . The problem of spin-lattice relaxation by translational diffusion in a solid has been studied by Torrey.⁹ A simple modification of his expression for T_1 yields

$$
T_1^{-1} = (2M_2x/\omega)\psi(k, y),
$$
 (1)

where M_2 is the second moment of the resonance
line for a rigid lattice with $x = 1$,¹⁰ x is the conline for a rigid lattice with $x = 1,$ ¹⁰ x is the concentration of 3 He atoms, ω is the Larmor frequency, and

$$
\psi(k, y) = yG(k, y) + 4yG(k, 2y),
$$

where

$$
G(k, y) = \int_0^\infty J_{3/2}^2(kx) \frac{1 - (\sin x)/x}{[1 - (\sin x)/x] + y^2} \frac{dx}{x}, \quad (2)
$$

in which $y = \frac{1}{2}\omega \tau_{\mathbf{S4}}$ and k is a parameter that like M_2 , depends upon the lattice structure. For the hcp lattice we have $k = 0.743$ and for an hcp
powder of crystallites,¹¹ $M_2 = 22.60 \times 10^{10}/V^2$ powder of crystallites,¹¹ M_2 =22.60×10¹⁰/ V^2 sec⁻², where V is the molar volume in cubic centimeters. In the high-field limit, $\omega \tau_{\text{S4}} \gg 1$, Eq. (2) may be easily evaluated and the expression for the spin-lattice relaxation takes on the form

$$
T_1^{-1} = 1.70x M_2 / \omega^2 \tau_{34}.
$$
 (3)

Resing and Torrey¹² have also developed a theory for the transverse relaxation time $T₂$ associated with translation diffusion in a solid. In the highfield limit their expression becomes

$$
T_2^{-1} = 0.922x M_2 T_{34}.
$$
 (4)

We may thus expect to detect the existence of the impurity tunneling motion through the measurement of spin-lattice relaxation times which surement of spin-lattice relaxation times which
vary as ω^2 and are independent of temperature.¹³ Studies of the magnitude of T_1 and T_2 should then yield the parameter τ_{34} . In the present work we report such measurements.

The relaxation rates T_1 and T_2 were measure
ing standard pulsed NMR techniques.^{14,15} Soli using standard pulsed NMR techniques.^{14,15} Solid 'He crystals with isotopic impurities of mole fraction $x = 0.02$, 0.01, and 0.005 ³He in ⁴He were prepared at constant volume using the blockedcapillary technique. The pressure of the solid helium thus formed was measured using a capacitance strain gauge¹⁶ and the molar volume was then determined from the known melting paramthen determined from the known melting para
eters of solid helium.¹⁷ The solid was cooled to low temperatures using a dilution refrigerator.

Differences in the absolute susceptibility of the various specimens measured in the nuclear relaxation experiments indicated that the actual concentration of 'He in the solid within the NMR coil varied from that in the gas mixtures used; sometimes by as much as 50% for the mole fraction $x = 0.01$ in the gas and by larger amounts for $x = 0.05$. Frequently the susceptibility of the solid specimen in the coil would be less than that of the liquid mixture before solidification, assuming a Curie-Iaw behavior for both the

liquid and the solid. This variation in concentration was probably due to isotopic enrichment of the liquid phase in ³He as the solid was formed. A region of 'He enrichment could have existed in any portion of the sample chamber, either inside or outside of the NMR coil; and also there was possibly an inhomogeniety in the ³He distribution within the coil. For solid mixtures with $x < 0.01$, the specimen concentration within the coil was assigned on the basis of susceptibility measurements with an uncertainty of a factor of 2.

Between the melting temperature and about 0.7 K, T_1 is strongly temperature dependent and passes through a sharp minimum at around 1 K. The details of this high-temperature behavior have been previously studied^{18,19} and are attributed to the thermally activated motion of vacancies through the lattice. Below about 0.7 K, T_1 becomes temperature independent and is not observed to change with decreasing temperature until the onset of isotopic phase separation, below about 0.2 K for our samples. Figure 1 shows the frequency dependence of T_1 in the temperature-independent region for a number of different molar volumes formed from the gas mixture with mole fractions $x = 0.01$ and 0.02. The data

FIG. 1. T_1 versus Larmor frequency at $x = 0.01$ and 0.02. Lines are typical of the ω^2 frequency dependence of T_1 for 0.02 > $x > 0.005$. T_1 increases with decreasing molar volume and decreasing 3He concentration.

FIG. 2. Volume dependence of the tunneling frequencies. Points are obtained from T_1 measurements at a Larmor frequency of 5 MHz with $x = 0.01$, using Eq. (3) in the text. Line is synthesis of available measurements of the ³He-³He tunneling frequency (exchange frequency). The impurity tunneling frequency, τ_{34}^{-1} , has a much stronger volume dependence than the 3 He- 3 He tunneling frequency, J_{33} : $d \ln \tau_{34}^{-1}/d \ln V \approx 3d \ln J_{33}/d \ln V$.

in Fig. 1 show that T_1 does indeed vary as ω^2 , as might be expected from Eq. (3). T_1 in pure 3 He and in the richer mixtures of 3 He in 4 He also displays a temperature-independent region which is due to the 3 He tunneling with 3 He neighbors (exchange). The frequency dependence of T_1 for specimens rich in ^sHe is quite different from
that observed here,¹⁹ varying approximately that observed here,¹⁹ varying approximately as $\exp(\omega^2/2x\omega_r^2)$, where ω_r is related to the exchange frequency J by $\omega_T = 6.48J$. The concentration dependence of T_1 is qualitatively in agreement with Eq. (3). T_1 increases as the concentration decreases. A precise determination of the concentration dependence is complicated by the scatter in the actual concentration of the specimens within the resonance coil.

Figure 2 shows the values of the parameter $\tau_{\rm{34}}$ ⁻¹/2 π at various molar volumes determined from T_1 data measured at a Larmor frequency of 5 MHz with the mole fraction 0.01 3 He in the gas used to form the solid. The points in Fig. 2 are calculated using Eq. (3). The scatter in the data is primarily due to the concentration variation rather than errors in molar volume (determined to better than 0.05 cm^3 or in the measurement of T_1 (determined to better than 10%). The volume variation of the ³He exchange fre-

FIG. 3. The concentration dependence of T_2 . The solid lines are calculated from Eq. {4) in text using values of τ_{34} at 21 and 20.3 cm³ obtained from Fig. 2. In the dilute limit, $x < 10^{-2}$, T_2 is consistent with the values expected for relaxation by means of 3He-4He tunneling. For $x > 10^{-2}$, T_2 is anomalously short. The dashed lines show the expected concentration dependence for relaxation by means of 3 He- 3 He tunneling (Ref. 19). For $x < 10^{-2}$ the concentration was determined from susceptibility measurements.

quency $J/2\pi$ is also shown in Fig. 2 with solid lines obtained from the measurements²⁰ of $\left\langle dP/\right\rangle$ dT _v and a synthesis of nuclear relaxation data.²¹ The most striking feature of the data in Fig. 2 is the very rapid increase in τ_{34} ⁻¹ with volume compared with the change in J over the same volume range. There have been no theoretical predictions concerning the nature of the volume variation of τ_{34} . The volume dependence of τ_{34} determined from the concentrations of ³He other than $x = 0.01$ is the same as that shown in Fig. 2.

The change in $T₂$ with concentration is shown in Fig. 3 for the molar volumes 21 and 20.3 cm'. The data for mixtures richer than $x = 0.02$ are The data for mixtures richer than $x = 0.02$ and taken from Miyoshi *et al*.¹⁹ The decrease in $T₂$ as pure ³He is diluted is surprising. The T_2 as pure °He is diluted is surprising. The dashed lines indicate the $x^{-1/2}$ increase in T_2 expected¹⁹ for the dilution effects upon the ${}^{3}\text{He}$ -³He tunneling-relaxation mechanism. The solid lines are calculated from Eq. (4) using the values of τ_{34} obtained from Fig. 2 to show the expected behavior of $T₂$ in the very dilute limit in which the 3 He-⁴He tunneling mechanism is responsible for the relaxation. For concentrations greater than $x = 0.02$, the actual behavior of $T₂$ can be seen to be quite different from that predicted by these simple considerations. The

anomalously short values of T_2 seem to imply that many of the 3 He atoms are not free to experience the motional effects measured in T , experiments on the same specimen. Eventually, as the specimen becomes dilute enough, $T₂$ increases several orders of magnitude in a relatively narrow concentration range below $x = 0.02$ to agree with the limiting value of $T₂$ expected from the Torrey model.

Andreev and Lifshitz¹ suggested that when impurities exceed a critical concentration the interactions of impurities with each other through a crystalline strain field will impede the tunneling transition from site to site. Yamashita and Tsuneto⁸ have estimated that the critical concentration above which the motion of dilute 4He atoms cannot act as a relaxation mechanism for the 3He tunneling reservoir is of the order of a few percent. Let us assume a strain potential between impurity atoms i and j of the form V_{ij} . $\sim mc^2(\Delta V/V)^2(a/r_{ij})^3$, where *m* is the mass of the atom, c is the sound velocity, $\Delta V/V$ is the volume strain around the impurity atom, a is the nearest-neighbor distance, and $r_{\bar{i}j}$ is the distance between impurities. The tunneling transition of the impurity will then become impossible when the strain energy, of order $|\nabla V_{i,j}|a$, exceeds the tunneling bandwidth energy,² $\Delta \epsilon \sim 2z\hbar J$, where z is the number of nearest neighbors. This is in qualitative agreement with what is observed in T_2 measurements. T_2 decreases as the ³He is diluted from $x = 1$ because the strain field from the 'He atoms prevents more and more of the ³He atoms from making the ³He-'He tunneling transitions. As the concentration is decreased below 10^{-2} an increasingly large: number of the ³He atoms become free to undergo the 'He-'He tunneling transition. The impurity atoms are distributed at random so that even in rich mixtures, $x > 10^{-2}$, enough of the atoms are apparently in a sufficiently weak strain field to make the tunneling transitions which we have detected in the T_1 experiments.

In summary, we have measured the characteristic impurity tunneling motion τ_{34} of ³He atoms through the 'He lattice by NMR relaxation studies. The volume dependence of the impurity tunneling parameter is much stronger than that of the ³He exchange parameter. Both the values of T , and T_2 are consistent with the τ_{34} which we deduce from the Torrey model.

The authors wish to thank Professor R. A. Guyer and Professor L. H. Nosanow for stimulating discussions of this problem.

)Work supported in part by the National Science Foundation through Grant No. GP-29682 and the Advanced Research Projects Agency through the Cornell Materials Science Center, Report No. 1568.

 1 A. F. Andreev and L. M. Lifshitz, Zh. Eksp. Teor. Fiz. 56, 2057 (1969) [Sov. Phys. JETP 29, 1107 (1969)].

 ${}^{2}R.$ A. Guyer and L. I. Zane, Phys. Rev. Lett. 24 , 660 (1970).

 3 R. Balakrishnan and R. V. Lange, Phys. Rev. A 3, 496 (1971).

 4 R. P. Giffard and J. Hatton, Phys. Rev. Lett. 18, 1106 (1967).

⁵M. Bernier and A. Landesman, Solid State Commun. 7, 529 (1969); M. Bernier, J. Low Temp. Phys. 3, 29 (1970).

6W. N. Yu and H. A. Reich, Solid State Commun. 7, 529 (1969).

 7 A. Landesman and M. Bernier, to be published.

 ${}^{8}Y.$ Yamashita and T. Tsuneto, to be published.

 9 H. C. Torrey, Phys. Rev. 92, 962 (1953).

 10 J. H. Van Vleck, Phys. Rev. 74 , 1168 (1948).

 ${}^{11}R$. C. Richardson, A. Landesman, E. R. Hunt, and H. Meyer, Phys. Rev. 146, 244 (1966).

 12 H. A. Resing and H. C. Torrey, Phys. Rev. 131, 1102 (1963).

¹³As in the case of the exchange tunneling reservoir in pure 3 He, the tunneling excitation bath (mass-fluctuation wave bath) is thermally coupled to the lattice by vacancy motion and/or phonons.

¹⁴D. S. Miyoshi, thesis, Cornell University, 1969 (unpublished) .

 15 R. C. Wayne, David Zamir, and J. H. Strange, Rev. Sci. Instrum. 35, 1051 (1964).

 6 See, for instance, G. C. Straty and E. D. Adams Rev. Sci, Instrum. 40, 1393 (1969).

 17 The molar volume of the mixtures is assumed to be given by $V(x, P) = xV_3(P) + (1-x)V_4(P) - cx(1-x)$, where x is the ³He concentration and $V_3(P)$ and $V_4(P)$ are the measured molar volumes of 3 He and 4 He at pressure P, given by E. R. Grilly and R. L. Mills, Ann. Phys. (New York) 8, 1 (1959). This expression for $V(x, P)$ is due to W.J. Mullin, Phys. Rev. Lett. 20, ²⁵⁴ (1968). The constant c is a correction factor given by $c = 0.4$ cm³/ mole.

 18 H. A. Reich, Phys. Rev. $129, 630$ (1963).

¹⁹D. S. Miyoshi, R. M. Cotts, A. S. Greenberg, and R. C. Richardson, Phys. Rev. ^A 2, 870 (1970).

 20 M. F. Panczyk and E. D. Adams, Phys. Rev. 187, 321 (1969).

 21 R. A. Guyer, R. C. Richardson, and L. I. Zane, to be published.