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where inside the cylinder, the magnetic surface
where the helical pitch of the field agrees with
the perturbation is singular in that the perturbed
function g must vanish at that layer.

K. Wakefield has calculated the graph of Fig. 1.
Discussions with Dr. H. P. Furth, Dr. M. N. Ro-
senbluth, and Dr. P. Rutherford were elucidating.
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A theory of nonlinear dispersive-wave propagation in inhomogeneous media is used to
predict the behavior of a Korteweg-de Vries solitary wave (soliton) incident on a gradi-
ent region between two uniform regions. When the gradient induces a transition into an
unstable state, the soliton fissions into a train of solitons plus, in general, an oscillato-
ry tail. We derive formulas giving the number and amplitudes of the fission solitons.
The theory is applied to surface gravity waves, magnetosonic waves, and ion-acoustic
waves.

The propagation of a large class of low-frequen-
cy, long-wavelength, plane-wave disturbances in
weakly nonlinear and weakly dispersive media. is
known' ' to be described by the constant-coeffi-
cient Korteweg-de Vries' (KdV) equation. This
equation yields solitary wave solutions' (solitons')
which propagate without change of shape. If the
medium contains externally imposed inhomogene-
ities (gradients), one expects that the solitons
will no longer be stationary. '

In this article, we predict quantitatively the be-
havior of a soliton which propagates from one
uniform region (1), through a gradient region,
and into another uniform region (2). The scale
length L of the gradient region is assumed to be
small compared to the scales on which the non-
linearity and dispersion act, yet large compared
to the scales of the waves themselves. The tran-
sition of a soliton from region 1 to region 2 is
therefore sudden (impulsive) as far as the nonlin-
earity a,nd dispersion are concerned, but slow
(adiabatic) as far as the gradient is concerned. '

The basic steps in our analysis are as follows:
firstly, to use the %KB approximation to describe
the transition of the soliton from region 1 to re-
gion 2, where the soliton is no longer in a station-
ary state (it goes into an "excited" or "unstable"
state); and secondly, to use the constant-coeffi-
cient KdV equation to describe the subsequent dis-

g= a/a, «l,
o = (f/l, )2» 1,

U=7}o =O(1).

(lb)

(lc)

Here a is the scale amplitude of the wave, a,. is
the scale amplitude of the medium, / is the scale
length of the wave, and l, is the dispersion length
of the medium. In accordance with what was said
above, we assume that

l «1.«crl = O(l/g).

The initial condition under consideration corre-
sponds to precisely one soliton propagating in re-

integration (fission) of the soliton —an already
solved problem. " A necessarily brief abstract'
by the authors described this method in the spe-
cial case of a solitary surface gravity wave in
shallow water incident upon a shoal ("shoal-in-
duced fission of solitons"). Here we present the
general result which is applicable to any type of
wave for which the KdV equation is a valid asymp-
totic description of propagation in a uniform me-
dium.

The relevant dimensionless parameters" and
their relative orders which are used in the as-
ymptotic analysis are the amplitude, dispersion,
and Ursell" parameters, given respectively by
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gion 1, and the Ursell parameter there will have
a certain value, say U, . In the gradient region,
a, and l, change from a„andL„to a„and l, 2,
respectively. Since by assumption the transition
occurs suddenly, the slow-acting nonlinear and
dispersive effects may be neglected in the gradi-
ent region. The linear WKB approximation yields
ao-e, '" and ho-v„where v, is the scale velocity
(linear propagation speed) which changes fromv„to e„.Combining these relations given for
the ratio 8 of the Ursell parameter in region 2 to
the Ursell parameter in region 1, we obtain

5.0

~s2 ~sl sl

Direct application of the theory of Gardner,
Greene, Kruskal, and Mirua' leads to the conclu-
sion that if B&1 the soliton in region 2 mill fis-
sion into tmo or more solitons plus, in general,
an oscillatory tail, whereas if 8 ~1 then there
will remain only one soliton plus an oscillatory
tail (which of course vanishes if R =1). More
precisely, the number K of fission solitons is
equal to the number of bound states of the follow-
ing Schrodinger eigenvalue problem":

8'g/Bx'+(A+2R eshc'x)( =0. (4)

It follows"'" that K is the greatest integer sat-
isfying the inequality

N &p(R), (5)

a (R) =(v /v )"'(p n)'R '- (6)

for n =1, 2, ~ ~ ~, lV. This ratio is independent of
the amplitude of the incoming soliton. Equations
(5) and (6) are valid for values of R greater than
or less than 1, but sufficiently close to 1.

In order to apply the above theory, one only
needs to know the dependence of a„l„andv, on
the physical quantity which gives rise to the gra-
dient. We shall present several examples.

For shallow-water waves, the still-water depth
h(x) is taken to be nonuniform. We have a, =h, l,
=h, v, =~gh. Hence R=~ "4, where r =h,/h„a
relation already derived by Ursell. " Fission

where p(R) =2[1+(I+SR)'"]. Thus to produce N
fission solitons one needs A &A~, where the
threshold R„is given by R„=,'N(N —1). F—urther-
more, the final amplitudes of the fission solitons
are proportional to the eigenvalues A„ofEq. (4).'
It may be shown that the ratio a„ofthe nth fission
soliton to the amplitude of the incoming soliton is
given by

I.O 2.0 3.0
INVERSE DEPTH RATIO, I/r= hI/hP

FIG. 1. Soliton amplification law for surface gravity
waves [Eq. (6) with 8 =r

therefore occurs when a soliton goes from deeper
water onto a shoal (h, &k,). The phenomenon of
shoal-induced fission of solitons was discovered
by means of numerical experiments by Madsen
and Mei." They set r =0.5 and observed three
fission solitons of relative amplitudes 1.67, 0.75,
and 0.16 plus an oscillatory tail. For r =0.5, Eq.
(5) predicts three fission solitons plus an oscilla-
tory tail, and Eq. (6) gives a, =1.72, aa =0.66,
and a, =0.10. This is good agreement considering
the approximations in the theory and the accuracy
of the experiment (about +0.05).

Equations (5) and (6) with R =r '' were pre-
viously derived by the authors. ' Figure 1 shows
a plot of Eq. (6) for this example with a compari-
son to the familiar linear, nondispersive resu1t
of Green, "who applied what has since come to
be known as the WKB approximation.

The second example is the magnetosonic soliton
(Adlam-Allen pulse)" which is known'~ to be de-
scribed by the KdV equation. Taking the magnetic
field B(x) to be nonuniform, we have a, =B, v,
= ALfven velocity ~B, and I, =c/co~ (independent of
B). Therefore R =(B,/B, )'". In contrast to the
previous example, fission is predicted to occur
when the soliton propagates from a region of low-
er velocity into a region of higher velocity (Ba)B,).

The third example is the ion-acoustic soliton"
(also known to be described by the KdV equation'")
propagating in a locally isothermal plasma with
an externally imposed electronic-temperature
nonuniformity 8(x'). In this case, v, ~ 8''a, l,
=Debye Length~ 8'~2, and a, is independent of 8
since the temperature is assumed not to partici-
pate in the propagating disturbance. We then ob-



VOLUME 27 NUMBER 26 PHYSICAL REVIEW LETTERS 27 DECEMBER 1971

tain R =(8,/8, ) "~. Thus fission is predicted to
occur when the soliton goes from a region of
higher temperature into a region of lower temper-
ature (8, «,), but the effect is much weaker
(thresholds are higher) than shoal-induced fission
of water waves.

A fission process qualitatively similar to that
discussed here is expected to occur also for en-
velope solitions described by the nonlinear para-
bolic equation, "but that requires a separate in-
vestigation.
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In two entirely independent experiments we have measured the Bayleight linewidth for
SF6 on the critical isochore and the results are found to be in strong disagreement with
previously reported measurements. Our linewidth data, after subtraction of background
terms, exhibit the same critical behavior observed in other fluid systems (&=0.61
+ 0.04). Within the experimental uncertainty our results agree with linewidths calculated
from the Kawasaki theory with no adjustable parameters.

The fundamental question to be answered by
Rayleigh linewidth measurements on fluids near
the critical point is whether or not a dynamic
property such as the linewidth (the decay rate for
fluctuations in the order parameter for the phase

transition) behaves similarly for different sys-
tems in the same sense that the static properties
are known to exhibit a similarity in critical be-
havior for different systems. In an effort to an-
swer -this question, there have been numerous


