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Helical Equilibrium of a Current-Carrying Plasma*
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By means of magnetohydrodynamic approximations, helical equilibrium configurations
of current-carrying plasmas housed in a perfectly conducting cylinder were obtained. A
particular solution with twisting current channels was obtained at finite amplitude. A
small-amplitude equilibrium equation for arbitrary current distributions was also ob-
tained. The presence of magnetic islands in the equilibrium configurations is apparent.

An azimuthally symmetrical toroidal equilibrium or a cylindrical equilibrium of current-carrying
plasmas is well know.®* These systems, however, could be subject to kink instabilities.® This sug-
gests that there is a neighboring equilibrium which does not have an azimuthal symmetry. In this pa-
per, we shall derive a finite-amplitude, helically symmetrical solution of a plasma restricted by a
perfectly conducting cylinder of radius a.

The plasma is subject to a magnetohydrodynamic equilibrium condition, that is,

I xB=vp. 1)

Cylindrical coordinates are used with » =0 corresponding to the axis of the cylinder. The plasma fills
the interior of the cylinder. Then by introducing helical coordinates such that

o=l0+k,z, (2)
B ,=k,yBe-1B,, : 3)
A, =kyAg-1A,=1, (4)
we obtain?
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Here B and A represent the magnetic field and vector potential, respectively. We solve the case where
p =0. Physically, B, represents the magnetic field strength parallel to the helix determined by 16 +k,2

= const,
Other components of magnetic field and current density in the z direction are
k,yB,+IBg=8)/8r, (1)
10y
Br“ - 7 3¢ ’ (8)
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Jz=77_3l.<_¢.ﬁ__l_se>d_se’ 9)
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Thus, the solution of Egqs. (5) and (6) determines the current distribution of the plasma within the cyl-
inder. The boundary condition is that B,=0 at v =a, or

8y/0¢ =0 at r=a. (10)

The analogy of this equation with either cylindrical or toroidal equilibrium equations is obvious. If
we let 1=0 we get a toroidal equation, and if we let 2,=0, we get the cylindrical equilibrium equation.
Particular solution.—By analogy with the method of Laing, Roberts, and Whipple® for toroidal equi-
librium, we let
(11)

B F=B+k%)?
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with kY|« B,. Then 5) can be written as

21k,B,

Eq. (
(SREALNWEIEE T N

9p?  or v 8r A% ()2 +12 3r
If k%Y?/B? is small enough, Eq. (12) can be solved
for arbitrary %, and .

However, for the purpose of understanding the
general features of the above equation, it suffices
to solve the case where lk, 7! <. Then instead of
Eq. (12), we get

2 32
2oy 10 oy 2%
2 0% v dr or 1
The term Bk, cannot be ignored, as |k%)?l < B2,
Then Eq. (13) has a solution of the type

—£B,=-Fk%). (13)

2B {1 +y[d,(k7) + ad ,(k7) cosel}; (14)

2k
¥= Rl
here y and o are arbitrary constants. The bound-
ary condition (10) requires

J,(ka)=0. (15)
The current density J, is then
2 kg zz)
J‘"_luok‘B‘)(l +f- 2152 o7 ) (16)
f=yd (kr) +yad,(kr) cose. 1)

The pitch of the magnetic field line is (for f=0)
By/B,~Bo/By=-ky/l. (18)

That is, this finite-amplitude helical equilibrium
appears when an azimuthally symmetric part (f
=0) has the same pitch as the perturbation.

The graph of f=const (Fig. 1) shows the mag-

v

FIG. 1. A cross section of the cylindrical current
channel with [ =2 perturbation. The function Jy(k7)
+0.25 Jy(k7) cos 20 is shown with Jy(ka) =0,

Fa 2+

1 R2
<1+532¢2

12)

netic island structure. [We note that p =p(®),
thus it follows that the plasma pressure should be
constant on a given surface.] This pattern ro-
tates helically along the axis. This pattern is
similar to the one observed experimentally.®
Arbitrary curvent distvibution.—For the cur-
rent distribution given as g(r), it is possible to
determine the neighboring helical equilibrium.
We now give the prescription to obtain an arbi-
trary solution close to the azimuthally symmetric
equilibrium. We write (again for |k, 7/« and B
>|B 2 —B2l)

Thus, choose ¥,=1,(r) so that

1d dzp ZkEBn
rdr ar l

Then define
r@) =9, (r),

where §,”! is the inverse function. This function
h can be a double-valued function of ¥. Then if
we let

$B2=—1u, [Yapr@)+C,

this equation satisfies the desired current distri-
bution, g(r). Now the neighboring equilibrium
solution ¥ =9,+¥, can be obtained as

+lug ().

8%y 8y, ., ok
r® 8¢t +'r afrrar l“"dzp Zp

If dJ,/dr+ 0 at the point where dzpo/dr=0, %, must
be zero at that point.

Conclusion.—A particular, finite-amplitude
solution of helical equilibrium with a cylindrical
boundary condition was obtained. Since the toroi-
dal plasma such as Tokamak can be approximated
as a straight plasma with periodic boundary con-
dition, the nonlinear perturbation of a kink-unsta-
ble Tokamak plasma might assume the shape cal-
culated here. We note that there exist magnetic
islands indicating that the plasma transport across
the magnetic field might be increased by the
presence of the nonlinear perturbation. '

A general prescription for finding a perturbed
solution for a given azimuthally symmetric cur-
rent distribution is also given. If dJ,/dr+ 0 every-
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where inside the cylinder, the magnetic surface
where the helical pitch of the field agrees with
the perturbation is singular in that the perturbed
function  must vanish at that layer.

K. Wakefield has calculated the graph of Fig. 1.
Discussions with Dr. H. P. Furth, Dr. M. N. Ro-
senbluth, and Dr. P. Rutherford were elucidating.
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Gradient-Induced Fission of Solitons
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(Received 5 October 1971)

A theory of nonlinear dispersive-wave propagation in inhomogeneous media is used to
predict the behavior of a Korteweg—de Vries solitary wave (soliton) incident on a gradi-
ent region between two uniform regions. When the gradient induces a transition into an
unstable state, the soliton fissions into a train of solitons plus, in general, an oscillato-
ry tail. We derive formulas giving the number and amplitudes of the fission solitons.
The theory is applied to surface gravity waves, magnetosonic waves, and ion-acoustic

waves.,

The propagation of a large class of low-frequen-
cy, long-wavelength, plane-wave disturbances in
weakly nonlinear and weakly dispersive media is
known!"® to be described by the constant-coeffi-
cient Korteweg—de Vries* (KdV) equation. This
equation yields solitary wave solutions* (solitons®)
which propagate without change of shape. If the
medium contains externally imposed inhomogene-
ities (gradients), one expects that the solitons
will no longer be stationary.®

In this article, we predict quantitatively the be-
havior of a soliton which propagates from one
uniform region (1), through a gradient region,
and into another uniform region (2). The scale
length L of the gradient region is assumed to be
small compared to the scales on which the non-
linearity and dispersion act, yet large compared
to the scales of the waves themselves. The tran-
sition of a soliton from region 1 to region 2 is
therefore sudden (impulsive) as far as the nonlin-
earity and dispersion are concerned, but slow
(adiabatic) as far as the gradient is concerned.”

The basic steps in our analysis are as follows:
firstly, to use the WKB approximation to describe
the transition of the soliton from region 1 to re-
gion 2, where the soliton is no longer in a station-
ary state (it goes into an “excited” or “unstable”
state); and secondly, to use the constant-coeffi-
cient KdV equation to describe the subsequent dis-
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integration (fission) of the soliton—an already
solved problem.®® A necessarily brief abstract!®
by the authors described this method in the spe-
cial case of a solitary surface gravity wave in
shallow water incident upon a shoal (“shoal-in-
duced fission of solitons”). Here we present the
general result which is applicable to any type of
wave for which the KdV equation is a valid asymp-
totic description of propagation in a uniform me-
dium,

The relevant dimensionless parameters'! and
their relative orders which are used in the as-
ymptotic analysis are the amplitude, dispersion,
and Ursell'! parameters, given respectively by

n=a/a,<1, (1a)
o=(/1;2>1, (1b)
U=nag=0(1). (1e)

Here a is the scale amplitude of the wave, a; is
the scale amplitude of the medium, [ is the scale
length of the wave, and /[, is the dispersion length
of the medium. In accordance with what was said
above, we assume that

l<L<xol=0(/n). (2)

The initial condition under consideration corre-
sponds to precisely one soliton propagating in re-



