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By means of magnetohydrodynamic approximations, helical equilibrium configurations
of current-carrying plasmas housed in a perfectly conducting cylinder were obtained. A

particular solution with twisting current channels was obtained at finite amplitude. A

small-amplitude equilibrium equation for arbitrary current distributions was also ob-
tained. The presence of magnetic islands in the equilibrium configurations is apparent.

An azimuthally symmetrical toroidal equilibrium or a cylindrical equilibrium of current-carrying
plasmas is well know. " These systems, however, could be subject to kink instabilities. ' This sug-
gests that there is a neighboring equilibrium which does not have an azimuthal symmetry. In this pa-
per, we shall derive a finite-amplitude, helically symmetrical solution of a plasma restricted by a
perfectly conducting cylinder of radius a.

The plasma is subject to a magnetohydrodynamic equilibrium condition, that is,
Jxg=vp.

Cylindrical coordinates are used with r = 0 corresponding to the axis of the cylinder. The plasma fills
the interior of the cylinder. Then by introducing helical coordinates such that

y =l0+k, z,
8q=k, xBe- lB„
A~=k, rAe-lA, —= g,

we obtain'

(2)

(3)

(4)

( P192y 9 1 ey 2f P ay 2lkgB, 9 1, dP
r'jay' sr r &r r (k,r)'+l' sr (k,r)'+f' sg 2 ~ dg'

B,=B,(C), P =P(C).

Here 8 and A represent the magnetic field and vector potential, respectively. We solve the case where
p =0. Physically, B~ represents the magnetic field strength parallel to the helix determined by &&+k,z
= const.

Other components of magnetic field and current density in the z direction are

k,rBg+ LBe =. 94/sr,

1 8$B„=——
r By'

r 1 8$ kg l B„1dB~
P+ (k,r)' p, sr r r r ) dy '

(s)

Thus, the solution of Egs. (5) and (6) determines the current distribution of the plasma, within the cyl-
inder. The boundary condition is that B„=0 at r =a, or

9$/&y =0 at r =a. (10)

The analogy of this equation with either cylindrical or toroidal equilibrium equations is obvious. If
we let l =0 we get a toroidal equation, and if we let k, =0, we get the cylindrical equilibrium equation.

Particular solution. —By analogy with the method of Laing, Roberts, and Whipple' for toroidal equi-
librium, we let

B = B 2+ k2$2
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with Ikgl «B . The E '5en Eq. ~5j can be

(12)
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written as

$2 ""~ ~ k" ~rr, ) +l Br (kr)'+l2 2B'
2/B 2

) g 0
e

J, (ka) = 0. (15)

The current dens t J, 'i y, is then

J,= — kgB0 1+2

lk

f= yJO(kr) +-ynJ, (kr) copy.

The itcp' ch of the magnetic f ldze line is (for f=0)
Be /B, = Be/Bo = - k gr/l . (18)
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where inside the cylinder, the magnetic surface
where the helical pitch of the field agrees with
the perturbation is singular in that the perturbed
function g must vanish at that layer.

K. Wakefield has calculated the graph of Fig. 1.
Discussions with Dr. H. P. Furth, Dr. M. N. Ro-
senbluth, and Dr. P. Rutherford were elucidating.
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A theory of nonlinear dispersive-wave propagation in inhomogeneous media is used to
predict the behavior of a Korteweg-de Vries solitary wave (soliton) incident on a gradi-
ent region between two uniform regions. When the gradient induces a transition into an
unstable state, the soliton fissions into a train of solitons plus, in general, an oscillato-
ry tail. We derive formulas giving the number and amplitudes of the fission solitons.
The theory is applied to surface gravity waves, magnetosonic waves, and ion-acoustic
waves.

The propagation of a large class of low-frequen-
cy, long-wavelength, plane-wave disturbances in
weakly nonlinear and weakly dispersive media. is
known' ' to be described by the constant-coeffi-
cient Korteweg-de Vries' (KdV) equation. This
equation yields solitary wave solutions' (solitons')
which propagate without change of shape. If the
medium contains externally imposed inhomogene-
ities (gradients), one expects that the solitons
will no longer be stationary. '

In this article, we predict quantitatively the be-
havior of a soliton which propagates from one
uniform region (1), through a gradient region,
and into another uniform region (2). The scale
length L of the gradient region is assumed to be
small compared to the scales on which the non-
linearity and dispersion act, yet large compared
to the scales of the waves themselves. The tran-
sition of a soliton from region 1 to region 2 is
therefore sudden (impulsive) as far as the nonlin-
earity a,nd dispersion are concerned, but slow
(adiabatic) as far as the gradient is concerned. '

The basic steps in our analysis are as follows:
firstly, to use the %KB approximation to describe
the transition of the soliton from region 1 to re-
gion 2, where the soliton is no longer in a station-
ary state (it goes into an "excited" or "unstable"
state); and secondly, to use the constant-coeffi-
cient KdV equation to describe the subsequent dis-

g= a/a, «l,
o = (f/l, )2» 1,

U=7}o =O(1).

(lb)

(lc)

Here a is the scale amplitude of the wave, a,. is
the scale amplitude of the medium, / is the scale
length of the wave, and l, is the dispersion length
of the medium. In accordance with what was said
above, we assume that

l «1.«crl = O(l/g).

The initial condition under consideration corre-
sponds to precisely one soliton propagating in re-

integration (fission) of the soliton —an already
solved problem. " A necessarily brief abstract'
by the authors described this method in the spe-
cial case of a solitary surface gravity wave in
shallow water incident upon a shoal ("shoal-in-
duced fission of solitons"). Here we present the
general result which is applicable to any type of
wave for which the KdV equation is a valid asymp-
totic description of propagation in a uniform me-
dium.

The relevant dimensionless parameters" and
their relative orders which are used in the as-
ymptotic analysis are the amplitude, dispersion,
and Ursell" parameters, given respectively by


