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We present a dual-resonance model for & pions which satisfies the Adler self-consis-
tency condition and provides a generalization of the Lovelace-Shapiro formula for four
pions. Our model has difficulty with SU(3) since there is no candidate for the ~ degener-
ate with the p. We also discuss briefly the problem of extending the model to include
fermions.

A long-standing problem for dual- resonance
models has been the consistent treatment of N-

pion scattering. The four-pion dual amplitude,
proposed long ago by Lovelace and Shapiro, ' sat-
isfied the Adler self-consistency condition pro-
vided that the p and m trajectories were separat-
ed by —,

' unit. Thus chirality seemed to place re-
alistic constraints on the masses of the 7t and p.
But since there are perfectly good dual chiral
four-point functions which do not need this con-
straint, ' the question of a consistent generaliza-
tion to N pions becomes very important. One
possible chiral N-pion amplitude has already
been proposed by Brower. ' Unfortunately, this
model has a tachyon associated with the p trajec-
tory and, furthermore, has an arbitrary p inter-
cept, so that the constraints seen in the Lovelace-
Shapiro formula do not appear. In this Letter we
show that a simple generalization of the Neveu-
Schwarz model has no such tachyon and, in fact
reduces to the Lovelace-Shapiro model in the
four-point case. We stress that, although there
are no ghosts on leading or on the first subsid-
iary trajectories, there are ghosts on lower tra-
jectories. Since similar problems occur in the
ordinary dual-resonance model, we do not be-
lieve that this disease is connected with chirality.

Before we present our model we describe a few
of its properties. Of course it has all the nice
features of the ordinary dual models: crossing
symmetry, factorization, and Regge behavior.
The spectrum of resonances includes a pion at
~,'=0, a p and 0 at~ '=~ 2=-', and an & at
m '=1. (We take the slope of all trajectories to
be 1 BeV '.) In terms of trajectories there is
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To insure conformal symmetry we require p„'
2 2=p, —2c = ——, or m, =2c ——, for zero-mass pi-2 2

ons. Notice that this scheme shifts all masses
by 2c2 in contrast to the model of Halpern and
Thorn. ' Our model can now be written

the exchange-degenerate p-f, with intercept —,
' and

an v-A. , degenerate pair with intercept 0 (degen-
erate with the pion trajectory). The breaking of
the degeneracy between the p-f, and the &u-A, is
probably the most serious deficiency of the mod-
el (aside from ghosts). There is an intrinsic
breaking of SU(3). Although we choose the inter-
cept of the pion to be 0 to ensure chiral symme-
try, the model can, in fact, be written for arbi-
trary intercept. At n, =-,' it is precisely the Nev-
eu-Schwarz model. ' This freedom of choice of
pion intercept may be useful for studying the chi-
ral breaking effects of a nonzero pion mass. We
also have a method for introducing a single fer-
mion line so we can describe N-pion-fermion
scattering.

The simplest way to present the model is through
the purely formal trick of increasing the dimen-
sionality of the harmonic oscillators and the mo-
menta to N+4 for the N-pion function. We assign
the (N+4)-dimensional momenta P„asfollows:

&, =&pip, &„,&;,(I., -I) 'V;, (1., -1) '
~ ~ ~ (l., -l) 't7; p, .& „,Ip), (2)

where the hats mean simply to use the (N+4)-dimensional analogs of the operators in Ref. 4. It is eas-
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ily seen that the extra oscillators have the following effects:

(L, —1) '- f duu 0 '(1 —u) "
and a slight modification of the rules for contracting "nearest-neighbor" fields IJ:

, (x,x„„)'"
~l (k, .k +c') ' "", I =&+1,

&Olk -II(x )$ II(x )IO) ='
x,xl k, .k ™,otherwise.
+m +l

(4)

Cyclic symmetry is proven by performing the usual manipulations on (2) and then observing that mak-
ing a cyclic change in the assignment of the extra. components of the p„'swill have no effect on the amp-
litude. To see the decoupling of the tachyon and ancestors we use the techniques of Neveu, Schwarz,
and Thorn' to rewrite Eq. (2) as

&,=&olv; (L, -~2) 'v; (L, ——,') '
~ ~ ~ (L, —k) 'vI, , IO).

The Adler zero is most easily seen when we write (5) as the integral representation

~ ~

1 A A A A A A A

du ~ ~ du~ u '
& 2' '"(1—u) '2' 3(1 —uu) '2'

& ~ ~ ~ (1 —uu ~ ~ u~ )
'2' &-&I

0

x&olP, II(1)P, II(u, ) ~ P~, H(u, u, ~ ~ u~, ) lo),

where I does not depend on u, . Letting p, -o we get
1 '1f du, u '""'"(1—u, ) "[u '"/(1 —u,)]f du, ~ du IJ,

(5)

with J independent of u, . But

f du, u '+'"(].—u) '2 '=B(2c', —2c ) =0

We observe that this mechanism for the Adler zero is essentially the same as that of Brower's model.
At first sight our model does not seem to factorize since the number of extra dimensions depends on

N. This is illusory, however. It is a very easy exercise to show that, because of the nearest-neigh-
bor coupling, in the form (5) only one of the extra sets of oscillators contributes at any pole: e.g. , at
a pole in the (1 ~ ~ l) channel only a, +, , b, +, and a„,a„"contribute. Furthermore, &A. ~a, +,

"~"'"Iand

&A. [a,+,"&a,+, '2. ~ ~ a„,"~ couple in exactly the same way as seen by direct calculation; in the same way
&A. Ib, +,

~""couples just like &X Ib„,'"a„,. Therefore, only states containing a„,' and b„,'" can be
linearly independent: All other states can be written as linear combinations of these. Finally, the
gauges G, /, and I., effectively remove the time component of b&'" and a&', respectively. The gauges
G3 /2 and I,, do not re move states since they invo lve linear re lations among al l the a, 's and 5 ~

's in-
cluding those already removed.

It is instructive to write Eq. (5) in a form which does not involve the extra oscillators. We claim
that an a.lternative form for (5) is

(6)

where D = J,'du u~o '"'" (1-u) ", and G„,and Vo are defined in Ref. 4. To see this, start by moving
the left-most G, z to the right. When it passes through a V~' it picks up the commutator [G»„V~']
= —v 2 V~. Left over is the term

V oG„+(Lo—2+2c~, —2c'+1)G», = V& B(LO+2c', —2c'+1)(L, —Lo) —2c'V& B(L0+2c', —2c ).

The first term on the right is proportional to a gauge which decouples, whereas the second term cor-
responds precisely to one of the extra terms required by the modified contractions (4). By continuing
this process one easily sees that (6) and (5) differ at most by a multiplicative constant. To study fac-
torization in the (1 ~ k) channel, (6) must be symmetrized:
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o = J'duu"'"' '(I -u) '" '.
0

The proof of (I) is quite analogous to that of (8). The form (7) is useful for studying the factorization
properties of A~, but cyclic symmetry is not transparent as it is in the form (2).

Qur attempt to generalize our model to include a single fermion line runs into difficulties with chi-
rality. The amplitude suggested by the formalism developed by Ramond, ' Neveu and Schwarz, e and
Thorn' is

(8)

where V~' is the ordinary vertex,

P5 —
( ])Z„d„td„D duum +l,o,-|(I u)

-2c
5P 0

and E' is the gauge introduced by Ramond. Qne
can show by direct calculation that the residue of
the pole at m„ in the fermion-antifermion chan-
nel (ff ) of A», factorizes into u(- p')y, u(p)
times our chiral amplitude for 2N pions. But,
unfortunately (8) fails to satisfy the Adler self-
consistency condition for one soft pion. The
problem is that the external line insertions give
a Yukawa-type coupling rather than a gradient-
type coupling. In fact, for pion-nucleon scatter-
ing the A. amplitude is identically zero while the
B amplitude approaches a nonzero limit as one
of the pions becomes soft. Qf course, the I, =1
part of the amplitude is linear in the soft momen-
tum as it should be. The fermion problem clear-
ly requires more study.

Isospin is incorporated into our model via the
usual Chan-Paton factors. That is, one multi-
plies A~ by Tr(v, ,7, ~ ~ ~ T, ) and then sums over
all inequivalent cyclic permutations as required
by Bose statistics. For the fermion amplitude
the isospin factor is y'~T, y7 2

~ T,„y,where y'
and y are isospinors for the fermions. With
these assignments one obtains the correct iso-
spin assignments for the mesons.

So far we have only described how our model
obeys the Adler self-consistency condition for a
single soft pion. Qther aspects of chiral invari-
ance are also true in our model. For example,
the P-wave coupling of two soft pions is universal,
which Mandelstam has shown is a general conse-
quence of the Adler condition. '0 Furthermore
this universality is not trivial since there are
soft poles arising from external line insertions.
These points have been discussed by Brower for
his model, but the same considerations apply to
our model. The present difficulty with fermions
is disappointing, but we are hopeful that the prob-

i lems can be overcome with more sophisticated
models.

The really difficult problem to solve is the in-
corporation of SU(3) into the model. In a sense
we have imposed G parity in an artificial way
which requires all odd-G-parity trajectories to
be split by —,

' unit from all even- G-parity trajec-
tories. Clearly, a really satisfactory model
must have odd —G-parity states degenerate with
even states. Qur model may be a useful starting
point but we really need some new ideas. De-
spite all its shortcomings, our model is interest-
ing both as an example of a chiral dual model and
as a potentially useful phenomenological tool.

One of us (C.B.T.) would like to thank Profes-
sor M. B. Halpern and Professor M. Suzuki for
helpful conversations.

Note added in proof. After we c—ompleted this
work, we received a preprint by John H. Schwarz
in which he discussed some of the properties of
this model using a slightly different operator for-

malismm.
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