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K-shell x-ray yields were measured for Al and Ni bombarded by H, D, He, and Li of
kinetic energies between 1 and 7.5 MeV/amu. Ratios of K-shell ionization cross sections
for projectiles of different atomic numbers Z,, at equal velocities, show pronounced de-
viations from the le dependence predicted in the plane-wave Born approximation. The
effect can be understood in terms of distortions of the K shell in the field of the ionizing

particles.

This Letter reports ratios of cross sections
for K-shell ionization of target atoms of atomic
number Z, by different energetic charged par-
ticles of atomic number Z, and mass number M,.
The cross sections 0,,(Z,) were measured for
targets of Al (Z,=13) and Ni (Z,=28) under bom-
bardment by beams of }H, 2D, iHe, and JLi. The
new data confirm the prediction' that at high par-
ticle velocities the ratio R, =[0,,(Z,")Z,’ %]/
l0,£(Z)Z,72], for Z,’>Z,, has values larger than
1. The results are shown in Fig. 1, together
with earlier data measured at lower particle
velocities.'"* The Ni data run smoothly into the
ratios measured for Cu (Z,=29) K shells by
Lewis, Natowitz, and Watson.®

The significance of this new effect lies in the
fact that it exhibits quantitatively the basic lim-
itations of the plane-wave Born approximation
(PWBA) in the theory of ionization cross sec-
tions. The origins of this effect can be traced to
the finite charge of real ionizing particles.*

If Z, «Z,, the projectiles act as bare point
charges when ionizing K shells, and Coulomb ex-
citation dominates.® One can suitably scale the
cross sections for this process by introducing

the wave-mechanical hard-sphere cross section
47a,,’ for each of the two electrons in the K
shell of radius a,,=7%/me®Z,, weighted by the
square of the strength of the Coulomb interaction
of the electrons with the incoming particle rela-
tive to their interaction with the target nucleus,
(2,/Z,)%

0,=87a,,*(Z,/Z,)°. (1)

In the PWBA one calculates, in effect, the scaled
cross section S, =(0,,/0,) in the limit Z,e~0,
with the result

Sp" A= Oli_rflo(ozx/oo) =n"'f@, 6), (2)
0

where f(n, 8) is a dimensionless function of 1
=v,?/v,,’ independent of Z,, v,,=Z,e*/7 being
the K-shell electron orbital velocity. The pa-
rameter 6 =21,,/Z,%, where L, (in a.u.) is the
observed ionization energy of the K shell, grows
slowly with Z, from ~0.7 for light target ele-
ments to ~0.9 for heavy elements. The large
range of cross sections under consideration is
shown in the nomograph on the top scale of
Fig. 1.7
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FIG. 1. Ratios R,y of K-shell ionization cross sections as a function of nl/ 2 for Al and Ni under bombardment by
particles Z; and Z=Z;. The upper scales give the particle kinetic energy in MeV/amu and a nomograph of the ion-
ization cross section for Z;=1 in units of 0y, Eq. (1), where 0,(Al)=27 kb and 0((Ni)=1.2 kb. Solid symbols repre-
sent new data. On the Al plot, open symbols denote data taken from Refs. 1, 3, and 4; for clarity, the two highest
points in Ref. 1 have been omitted. On the Ni plot, open symbols represent the data from Ref. 5 for Cu (Z,=29).
The new ratios for D/H are equal to 1 within experimental error. The curves depict theoretical Z; dependences
for small and large 7, extended by dashed lines to the value 1 =62/4 where the effect is expected to cancel.! The
curves marked 1 and 2 represent the predicted dependences of the effect of Z'—Z ;=1 and 2, respectively.

The proportionality of the cross section to Z,?
is characteristic of the PWBA: One assumes
the charge of the incoming particle to be so
vanishingly small that, during the collision, the

particle wave remains planar and the target elec-

tron wave function remains an unperturbed ei-
genstate of the atom. This theory predicts that,
for different types of particles Z, and Z,’ im-
pinging with equal velocity v, on given target
atoms Z,, the ratio R,,=S,,(Z,")/S,x(Z,) is al-
ways unity.

For projectiles of finite positive charge, sig-
nificant deviations of R,; from unity are pre-
dicted to occur at low and high .'® Their ori-
gins can be understood qualitatively in terms of
simple plausibility arguments. In very slow col-
lisions, v, «v,,, K-shell ionization occurs only
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for deep penetration into the target K shell. In
such collisions, the binding charge seen by the
electrons to be excited increases, effectively,
from Z, to Z,+Z,. This decreases the cross
section. A Taylor series expansion of o,,""?A
about the unperturbed binding energy, retaining
only first-order terms in the change of the bind-
ing, results in a subtractive Z -dependent effect
in the sense that for Z,/Z, «1, 0,,=0,, "3
-10((Z,/2,)%).. By contrast, at particle veloci-
ties v, 2 v,y, K-shell ionizations occur over in-
teraction distances of order a,;=2,™* (a.u.) and
larger. In terms of the K-shell polarizability
0y Z, * (a.u.), the K-shell orbits are distorted
in the field of the passing particle, &= Z,e%/a,,>
by a relative amount 6/a, = o,,8/ea,, < Z,/Z,
since e6 = a,,&. This shortens the effective in-
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teraction distance and thus increases the interaction strength between particle and electron from Z, to
Z,(1~08/a,,)"'. When inserted in Eq. (1), an additive Z,*-dependent effect results in the sense that for

Z,/Z,<1, 0,,=0,, """ +|0((Z,/Z,))
Zl ,!

ed by the PWBA in the following ways®:

S (Z /) (1 - |O((le —Zl)/ZZ)l for n<< 1,
=K1 =

Rx= (
T SaZ) 1oz, - 2)/z) form 21,

Given these two domains of 7, one expects the
effect to change signs between the range of valid-
ity of the equations; in fact, it occurs atn=6%/4."

At very low velocities, R, depends, as well,
upon the charge-to-mass ratio of the particles.
This effect is well understood: The mass depen-
dence of the Coulomb deflection of projectiles of
equal velocity in the field of the target nucleus
favors, through their deeper K-shell penetration,
excitation by the projectiles with the lower value
of Z,e/M,.2*

The ionization cross sections are extracted
from measurements of characteristic x-ray
yields, with the assumption that the fluorescence
yield is independent of Z,.° Extensive series of
such data on Al have shown the effect under dis-
cussion for <1 and confirm in some detail the
theoretical predictions of its magnitude.’"* In
Fig. 1 we report the new experimental results
for n= 1 which, together with the earlier data,
exhibit the entire n dependence of the effect antic-
ipated by Eq. (3). Details of the data acquisition
and the absolute cross sections will be published
elsewhere.

Thin targets of Al (20 ug/cm?) and Ni (180 pg/
cm?) were exposed at 45° to particle beams from
the Brookhaven National Laboratory tandem Van
de Graaff accelerator. The characteristic K-
shell x rays from the target were viewed per-
pendicular to the beam direction by a Si(Li) x-
ray detector. The transmitted beam current,
typically 20-50 nA, was measured in a 10-m
Faraday cup which also served as a beam dump.
K-shell x-ray spectra with peak-to-background
ratios of at least 50:1 were obtained. With the
assumption that the fluorescence yield is Z, in-
dependent, the uncertainty in the ratio R, is
+ 2% for the present data. The earlier low-ener-
gy data have an uncertainty of +30%.

The Al (Z,=13) data show three distinct Z, de-
pendences (Fig. 1). For Z,’=Z, (D vs H), R,
is unity within experimental accuracy at inter-
mediate and high velocities, and thus tests the
basis of our arguments. For Z,”’-Z,=1 (He vs
H or D), R,, rises with increasing n from below

. One concludes that the ratio R,, for different particles Z, and
where Z,<Z,’<< Z,, should show deviations proportional to (Z,” - Z,)/Z, from the value 1 predict-

®)

1

unity to values above unity near n =6%/4, passes
through a maximum and slowly approaches unity
from above. For Z,'-Z,=2 (Livs Hor D), R,
follows the same trends over the velocity range
studied. The deviations from unity near the max-
imum are somewhat larger than twice the de-
viations observed for Z,’ - Z,=1. This could
indicate that the experiment is sensitive to high~
er-order correction terms in just the n range
where problems of convergence are expected.’
Beyond the maximum, the deviations from unity
are proportional to Z,’ = Z, and show asymp-
toti/cally the predicted decline proportional to

n -3/2,

The rise of R,, observed at the lowest particle
velocities shows the influence of differences in
the charge-to-mass ratios on the Coulomb de-
flection of the incoming projectiles. The isotope
effect shown for the pair *D/*H is similar to that
of the pair *He/*He reported earlier.®* For the
pair *He/?D, of equal charge-to-mass ratio, the
influence of the Coulomb deflection essentially
cancels, and R,; <1 even at very small n, as
predicted.?

The Ni (Z,=28) data in Fig. 1 exhibit the same
trends. At low 7n they confirm the predicted Z,
dependence of the R,, decline. Atn>6%/4, the
Ni data overlap with and are extended by recent
Cu (Z,=29) data.® The magnitude of the effect is
reduced relative to that observed for Al (Z,=13)
as expected from its dependence on Z,'.

In summary, experimental K-shell ionization
cross sections for swift nuclei of atomic number
Z,«<Z,, as extracted from characteristic x-ray-
yield measurements, show a new, distinct veloc-
ity-dependent effect proportional to Z,3. The
magnitude of the effect, and its opposite sign in
the two domains of particle velocities v, <v,,
and v, >v,,, confirm theoretical predictions
given earlier.”” The physical origins of the ef-
fect are traced to K-shell distortions in the field
of the ionizing particle. We conclude that the
plane-wave Born approximation is inadequate in
significant and basic ways. The experiments
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point to the need for new approaches to the prob-
lem of Coulomb excitation of atoms with approxi-
mations that realistically and comprehensively
incorporate, ab initio, the finite charge of phys-
ical projectiles.

*Work supported by the U. S. Atomic Energy Commis-
sion.
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"When 7<<1, S,k rises steeply with 7, approximately
proportional to %67, In the range n=5x10" to =10,
f(n, 6) is known numerically [G. S. Khandelwal, B. H.
Choi, and E. Merzbacher, At. Data 1, 103 (1969)].
Near =1, S,k goes through a maximum of order unity
and diminishes slowly as 1™ Inn when n>>1.

81t is interesting to note that the signs in Eq. (3)
would be reversed if the incoming projectiles were of
negative charge.

9Testing a conjecture by Lewis, Natowitz, and Wat-
son (Ref. 5), we measured the relative Ka/Kg x-ray
yields in Ni and found them to be constant to +5% for
all the projectiles in the particle energy range studied.
By comparison, the measured Ni x-ray yield ratios
vary over a factor 2 in this range. We take this as evi-
dence that on the scale of the effect under investigation
the fluorescence yield is independent of Z, at least for
small Z;, as indeed one should expect on theoretical
grounds.
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The dissociative excitation H, +e—~H(2s) + H+e has been studied with a time-of-flight
method. Measurements of the excitation function and the angular distribution of the
metastable atoms show that the slow atoms arise from dissociation out of ¢ 32 ,* and
B’ 1% " states and from predissociation out of the d®M,* and D 1, * states. The fast
atoms arise from a previously unreported 1Hu state that corresponds to a separated-
atom limit in which both atoms are in n=2 states.

The dissociative excitation of molecular hy-
drogen can proceed via the process H, +e —H(2s)
+H+e in which one of the product hydrogen
atoms is in the metastable 22S,,, state. Leven-
thal, Robiscoe, and Lea' used a time-of-flight
(TOF) method to measure the energy distribution
of the H(2s) atoms and found that the dissociative
excitation yielded metastable atoms in two dis-
tinct kinetic-energy ranges: ~0.3 eV (“slow”)
and ~4.7 eV (“fast”). Subsequent TOF experi-
ments on the dissociation of H, have been re-
ported by Clampitt and Newton? and also by
Czarnik and Fairchild.® In the present Letter
we report results obtained from a TOF experi-
ment* that differs from the earlier work mainly
in that the detector can view the angular distribu-
tion of the H(2s) atoms with a resolution of 1
degree over a range of 60 to 120 degrees with
respect to the electron beam. From measure-
ments of the excitation function and the angular
distribution of both the slow and fast metastable
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atoms we deduce the symmetry, multiplicity,
and asymptotic energy of the final states of the
dissociation process; our conclusions here dif-
fer in several significant aspects from those re-
ported by the abovementioned workers. For ex-
ample, we find that the fast H(2s) atoms arise
from a previously unreported I, state that cor-
responds to a separated-atom limit in which
both H atoms are in » =2 levels.

Figure 1(a) shows a schematic of the dissocia-
tive excitation process. An electron collides
with the H, molecule and excites it “vertically”
in the Franck-Condon region. If the transition
is to a point above the asymptotic limit of the
excited state, (or if, as in predissociation, a
normally bound final state mixes with another
state that has a lower asymptotic energy) then
the molecule dissociates. The excess of the ex-
citation energy over the asymptotic energy of
the final state is shared, equally, as Kkinetic
energy by the outgoing hydrogen atoms. The



