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satisfies all Poisson bracket relations (6)-(9).
As an example, consider

H = (p, '+p, ')/2m,

a conspicuously momelativistic Hamiltonian.
Then

M' = (1/4m') (p, '+ p, ')' —P',

= (1/16m')I. P'+ (p, —p. )'f' —P'.

We obtain

p, —p=nI4m(M'+P')' ' —P']' ',
where

n-=(sinn cosp, sino. sinp, coso. ).

(2o)

(21)

(22)

ql Pl q2 P2& (25)

where p, and p, have to be expressed in terms of
P, M, o. , and P. Obviously, F is rotationally
symmetric; so Q= 8F/8P is a vector.

From (10) and (24) we readily obtain p, and p, as
functions of P, M', o. , and P, which shall hence-
forth be considered as our new canonical momen-
ta I'q.

We now take

We shall not pursue this example since it is de-
void of any physical significance. It clearly
shows, however, that the fulfillment of the Pois-
son bracket relations (1)—(9) does not guarantee
Lorentz invariance unless further restrictions
are imposed on the canonical variables.
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A wide class of exact solutions of the stationary Einstein-Maxwell equations character-
ized by a flat "background" three-space is obtained. The solutions can be interpreted as
the external gravitational and electromagnetic fields of one or more spinning sources
with unit specific charge in stationary configuration.

Recent theoretical and experimental results' '
have underlined the necessity of studying exact
solutions of the general-relativistic field equa-
tions. Realistic models of gravitational collapse
and its final state are expected to account for the
implications of the presence of angular momen-
tum and the interaction of gravitating systems
with electromagnetism. Mainly because of the
complicated nonlinear structure of the field equa-
tions, the only explicit final-state model meeting
these requirements is the Kerr solution and its
counterpart, vacuum except possibly for electro-
magnetic fields, found by Newman and his co-
workers. ' The present Letter is aimed at a radi-

cal remedy of this situation. A variety of physi-
cally meaningful stationary solutions of the Ein-
stein-Maxwell field equations will be constructed
below, including the Kerr-Newman metric with
specific charge le l/m equal to unity.

We adopt the form of the general stationary
line element'

dT' = f 'g;» dx'dx +f(dt+ ~;—dx')'

(i, k, ~ ~ ~ =1, 2, 3),

where the metric field variables are functions of
the spacelike coordinates x' and where t =x' (we
are using units chosen so that the velocity of
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light c =1 and the gravitational constant of Ein-
stein k =2). It should be noted that the coordinate
transformations

t =t+t, (x"),

x"=x "(x") (2b)

are still permissible once (1) has been adopted. '
In the usual vector notation referring to the (3
x3) "background" metric g;» and its inverse g",
the equations of interacting stationary gravita-
tional and electromagnetic fields take the form'

(V —G) ~ G = H. H —G G,

VxG =H*xH —G*xG,

(V —G). H = ~(G —G*)H,

V x H = ——'(G+ G*) x H,

(3b)

(3c)

(3d)

(3e)

Here R;, =—R;„"~is the Ricci tensor obtained from

g, ~; the complex, three-component vectors G

and H are constructed from the metric variables
and the four-potential A „=(A„A):

G=(2f) '(vf+i~l), (4a)

H=f '"vC, (4b)

where the complex function 4 and the real vector
0 are defined as

Hei =AD,

Im4 = —f(V x A + u x V&0),

0 =-f 'Vx&u.

(5a)

(5b)

(5c)

The integrability conditions for Im4 follom from
the field equations. The gauge freedom

A „'(x ') =A „(x') + 8 „x (6)

and (5) imply that 4 is determined up to an addi-
tive complex constant. Conversely, given C and
0, Eqs. (5b) and (5c) yield A and u, apart from
gradient terms corresponding to the time-scaling
and gauge freedoms (2a) and (6).

The condition H=O characterizes sourceless
gravitational fields, while G = H = 0 holds for the
flat Minkowski space. Thus, rough' speaking,
H represents the Maxwell field and G may be as-
sociated with the gravitational field in the present
formalism. Let us consider nom the fields for
which the background space with metric g;» is
flat. Solution of the field equations (3) yields

and complex harmonic function $ satisfying the
flat-space Laplace's equation

~*;;-~,: =-ie~, »(00' -ll' )~a (9)

A;., —A, .; =f 'e;, »ImC "~g+~;A, ., —cu,.A. ...
where the semicolon in a suffix indicates covari-
ant derivatives referring to g;~. Integration con-
stants have been absorbed in f and 4, using the
available freedom in the choice of the variables.

Our results can be summarized in the form of
a compact recipe for constructing exact solutions
of the field equations (3): (i) Choose any two so-
lutions of the usual flat-space Laplace's equation
and combine them to form the complex function

(ii) Calculate the field variables using the ex-
plicit formulas (9), further the coordinate and

gauge freedoms (2) and (6), respectively. As-
ymptotically well-behaved solutions result if we
add a further rule: (iii) I.et g be chosen so that
for large values of the radial coordinate r it be-
haves like

M . cos6(=1+—+iJ, +q, (10)

where g stands for real terms of order ~ ' as
mell as for imaginary ones of order x ', and 8 is
the polar angle. M and J denote the total mass
and angular momentum of the source, respective-
ly.

The class of solutions obtained this way is the
stationary generalization of the static class dis-
covered independently by Majumdar' and Papape-
trou. ' In fact, if we choose g to be real by use of
Eqs. (2a) and (9) we can set ~ =0, which is a
property characteristic of static fields.

Taking q =0, identica, lly, in (10), we obtain a
particular stationary solution with

f ' =(1+M/x)'+(J c s8o/r')',

I =f(1+M/~ —iJ cos8/r'),

and with the line element

d~'= f'[dr'+r-'(de'+sin'ed'')]

Relying on definitions (4) and (5), all field quanti-
ties can be generated directly from the complex
harmonic g according to

f "=Pg, C =e' P ', A, =ReC,

G= —Vlng, H= —e' g'"P '"Vg

with the arbitrary real constant 5 (duality angle),
+f dt —J 2+—dp '. (l2)

sin'9 M
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The appearance of a true singularity at r =0 to-
gether with the far-field approximation show that
this field is produced by a source centered at the

origin, having an electric charge and magnetic
moment equal to the mass M and angular momen-
tum J= (J, 0, 0), respectively (in units of c =k/2
=1). By reversing the sign of P, a solution with

opposite electromagnetic moments is obtained.
We can also change the signs of Ref and Img sep-
arately, and thus manipulate the electric and

magnetic moments independently. To reverse the
direction of angular momentum, in addition, the
reflection y - —p should be performed in (12).

The line element (12) is axially symmetric. We

can, however, easily construct solutions without

any spatial Killing symmetry. As an example,
1st us transform the source of (11) and (12) from
the origin to an arbitrary position and orientation
and take the superposition of several P's thus ob-
tained. It is clear that the resulting field, in the
general case, will not show any spatial symme-
try. Writing

g=g, (r, r„J,)+g,(r, r„J,)+ ~ ~ ~, (13)

P =1+m/(R -m +ia cosB), (15)

where the real constant a, following Kerr, de-
notes the angular momentum per unit mass of the
source. We transform to polar coordinates':

((I =1+m/(r'+2iar cos8 —a')'~'.

The singularity is located at the imaginary point
r, (r=ia, 8=0). We can evidently move the source
by performing a rotation followed by a transla-

the corresponding field contains singularities at
r„r„~~ ~ . If we associate the location of the
sources with singular regions, we conclude that
the field generated by (13) is produced by several
charged, spinning bodies held in equilibrium con-
figuration by their balanced gravitational and

electromagnetic interactions.
By direct calculation it can be established that

the Kerr-Newman field possesses a flat back-
ground space if and only if e =m, that is, j.f the
total charge, apart from a sign, is equal to the
mass of the source. Using spheroidal coordi-
nates (R, B) given by

[(R —m)'+a'] sin'B = r' sin'8,

(R -m) cosB =r cos8,

the appropriate generating function is

tion in the three-space. As a result, we have the
field of a Kerr-Newman object with arbitrary
spin orientation and location. Care should be tak-
en here of the transformation properties of the
complexified position vector" r, . Taking a com-
bination of several displaced Kerr-Newman
fields, we get solutions representing the equilib-
rium state of more sources. Note that the Kerr-
Newman field with e'=m', as given by (15), con-
tains a nonsingular event horizon" at R =m only
if a =0, that is, in the static Reissner-Nordstr5m
limit.

While the Kerr-Newman solution has a fixed
moment structure, "for the present class of so-
lutions no restriction is made on the moments,
except that any given choice of the mass moments
determines, up to a sign, the electric and mag-
netic moments and vice versa.

It seems not hopeless that the generalized Isra-
el conjecture" can be proved (or, very unlikely,
disproved) to be valid, at least for the present
class of stationary fields. Work on this is en-
couraging also since eventually the "restricted"
proof may suggest a way of attacking the general
problem.

I thank Professor Achille Papapetrou for help-
ful comments on the manuscript.
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