Oxygen-17 Hyperfine Interaction of the $V_{\rm F}$ Center in MgO⁺

A. Schoenberg, J. T. Suss, and S. Szapiro

Solid State Physics Department, Israel Atomic Energy Commission, Soreq Nuclear Research Centre, Yavne, Israel

and

Z. Luz

Isotope Department, The Weizmann Institute of Science, Rehovot, Israel (Received 30 September 1971)

An ESR study of $v_{\rm F}$ centers in single crystals of MgO enriched in ¹⁷O is reported. The ¹⁷O hyperfine tensor components are found to be $|t_{\parallel}^{17}| = 104.5 \pm 0.5$ G and $|t_{\perp}^{17}| = 14.5 \pm 0.5$ G. From these results and those for g_{\parallel} and g_{\perp} , two parameters of the O⁻ ion in MgO are determined: The hyperfine interaction parameter α^{17} is found to be 22.8 G and the average of r^{-3} over the 2*p* orbital is $\langle r^{-3} \rangle_s = 2.75 \times 10^{25}$ cm⁻³.

The formation of V centers by γ irradiation of alkaline-earth oxides has been studied extensively by Wertz and co-workers.¹⁻⁴ These centers give rise to characteristic ESR spectra with axially symmetric g tensors. Their unique axes are parallel to the three equivalent [100]-type directions. The g_{\parallel} values are centered upon the g_{\perp} value of the free electron, and the g_{\perp} values are about 2.04. It was proposed that these centers consist of a positive hole trapped on oxygen, adjacent to a positive- (alkaline-earth) ion vacancy and associated with a charge compensator, such as a trivalent transition-metal impurity (V_a) , F⁻ impurity ($V_{\rm F}$) or an (OH)⁻ group ($V_{\rm OH}$). The $V_{\rm F}$ and V_{OH} centers were found to exhibit hyperfine splittings due to F and H, respectively. The identification of the V centers as O^- ions with the unpaired electron essentially localized on the oxygen was based mainly on the observed g tensors. This conclusion can be substantiated and more information on the electronic structure of the center can be obtained by measurements of the hyperfine interaction with oxygen nuclei. However, the only stable magnetic oxygen isotope (¹⁷O, $I = \frac{5}{2}$) has a very low natural abundance (0.037%) and thus normally no hyperfine splittings are observed. To overcome this limitation we have used MgO enriched in ¹⁷O and the results obtained and reported in this note represent a significant test of a model of one of the intrinsic defects in solids.

Single crystals of ¹⁷O-labeled MgO were grown by the flux evaporation method⁵ from PbF₂ using ¹⁷O-enriched powder.⁶ The MgO powder was prepared by dissolving Johnson-Matthey's "Specpure" magnesium crystals in ¹⁷O-enriched water (10%) in the presence of NH₄Cl. The resulting Mg(OH)₂ was transformed to MgO by heating to 550°C *in* *vacuo* for two hours and subsequently heating in a platinum crucible to 1300° C in an argon atmosphere. The use of argon was necessary in order to prevent losses of heavy oxygen by exchange with the air. The crystals were also grown in an argon atmosphere, but despite this precaution the ¹⁷O content in the crystals was reduced to about 0.5% as determined from the intensity of the satellites in the ESR spectra. X-ray diffraction and ESR indicate a significant amount of twinning in some of the crystals grown.

Upon γ irradiation of our crystals one dominant type of V center was observed. We studied this center at liquid-nitrogen temperature at both Xband and Q-band frequencies using a Varian model E-12 ESR spectrometer. The g values were determined relative to diphenylpicrylhydrazyl as a standard for which a value g = 2.0037 was taken. The magnetic field sweep was calibrated using the isotropic hyperfine splitting of the Mn²⁺ impurity which was taken as 86.8 G.⁷ Under low gain the signal of the V center consists of a doublet with a maximum splitting of $t_{\parallel} \cong 0.8$ G when the magnetic field is parallel to the g_{\parallel} axis and a minimum splitting of $t_{\perp} < 0.3$ G for the perpendicular direction. The g values were found to be g_{\parallel} $=2.0032\pm0.0001$ and $g_{\perp}=2.0389\pm0.0001$, where the errors are estimated from the uncertainty in the mounting of the crystal and the determination of the line positions. These results are almost identical to those found previously² for the $V_{\rm F}$ center: $t_{\parallel}^{F} = 0.74 \text{ G}, t_{\perp}^{F} = 0.25 \text{ G}, g_{\parallel} = 2.0031$, and $g_{\perp} = 2.0388$. The predominance of such centers in our sample is not surprising in view of the fact that it was grown from PbF, flux.

In the ESR spectra of labeled crystals at high gain, satellites due to ¹⁷O nuclei are readily observed. In Fig. 1 is shown a typical spectrum for

FIG. 1. Q-band ESR spectrum of a γ -irradiated single crystal of MgO enriched to ~0.5 at.% ¹⁷O recorded at liquid nitrogen temperature. The magnetic field is along the [100] direction. The line positions of the $v_{\rm F}$ centers in the parallel (v_{\parallel}) and perpendicular (v_{\perp}) directions, as well as their ¹⁷O satellites (Nos. 1 to 6), are indicated. The main line of v_{\parallel} recorded at a much larger field expansion and higher attenuation is inserted to show the hyperfine splitting due to the fluorine nucleus. Some of the other peaks corresponding to known paramagnetic impurities are also labeled.

 $H_{\rm dc}$ along the [100] direction. The six satellites due to the centers having axes parallel to the external field can all be seen, while those of the centers in the perpendicular direction which are of double intensity are partly hidden under peaks due to other species. The spectra can be fitted by the spin Hamiltonian

$$\begin{split} \mathcal{K} &= \beta_e g_{\parallel} H_z \, S_z + \beta_e g_{\perp} (H_x \, S_x + H_y \, S_y) \\ &+ t_{\parallel}^{17} S_z \, I_z + t_{\perp}^{17} (S_x \, I_x + S_y \, I_y), \end{split}$$

with $t_{\parallel}^{17} = 104.5 \pm 0.5$ G and $t_{\perp}^{17} = 14.5 \pm 0.5$ G.

These results are consistent with the identification of the V center in MgO as O⁻. We shall discuss them along the same lines as Brailsford and co-workers,^{8,9} who studied the O⁻ radical in single crystals of alkali halides. They used the formalism due to Zeller, Shuey, and Känzig¹⁰⁻¹² to derive expressions for the g and t^{17} tensors. The g shifts result from mixing low-lying p_x and p_y orbitals, via the spin-orbit coupling, into the p_z orbital, carrying the unpaired electron. The corrected p_z orbital is given by

$$|\varphi^{\alpha}\rangle = C|p_{\alpha}^{\alpha}\rangle - A(|p_{\gamma}^{\beta}\rangle + i|p_{\gamma}^{\beta}\rangle),$$

where

$$C = [1 + 2\delta/(2 + \delta)^2]^{-1/2}, \quad A = C\delta/(2 + \delta), \quad \delta = \lambda/E,$$

and E is the tetragonal crystal field splitting.

From these equations one obtains

 $g_{\parallel} = g_e C^2, \quad g_{\perp} = g_{\parallel} + 4lAC,$

where l is the orbital reduction factor. Comparison with our experimental results shows that C^2 is very nearly unity. The positive shift of g_{\parallel} indicates that a small contribution to $|\varphi\rangle$ from highlying atomic orbitals also exists. Neglecting this small effect and taking l=1 we find A=0.0096. For the t^{17} tensor components the relevant equations, neglecting second-order terms in A, are

$$t_{\parallel}^{17} = \alpha^{17} + 2\beta^{17}(1 - 3A),$$

$$t_{\perp}^{17} = \alpha^{17} + 4h\gamma_{17}A\langle \gamma^{-3}\rangle_{l} - \beta^{17}(1 - 3A),$$

where $\beta^{17} = \frac{2}{5}h\gamma_{17} \langle r^{-3} \rangle_s$ and $\alpha^{17} = \frac{8}{3}\pi h\gamma_{17} |\psi_0|^2$. Taking $\langle r^{-3} \rangle_s / \langle r^{-3} \rangle_l = 1.13$,^{8,13} two sets of results for α^{17} and β^{17} are obtained depending on the relative signs of t_{\parallel}^{17} and $t_{\perp}^{17.14}$. These results together with those for O⁻ in KI are summarized in Table I.

In previous work⁸ on O⁻ the sign of t_{\perp}^{17} was chosen so that a negative α would result, as was found in ³P atomic oxygen.¹³ This choice also gave $\langle r^{-3} \rangle_s$ values close to those calculated for the 2*p* orbital in a free oxygen atom.^{13,15,16} In the present case of the $V_{\rm F}$ center in MgO, neither of the two possible choices results in a negative α^{17} and for both cases $\langle r^{-3} \rangle_s$ assumes values considerably lower than those for the free atom. On the

	g [°] II	81	t ¹⁷ (G)	t ₁ ¹⁷ (G)	α ¹⁷ (G)	2β ¹⁷ (G)	$\langle \gamma^{-3} \rangle_s$ (10 ²⁵ cm ⁻³)	Ref.
$V_{\rm F}$ in MgO	2.0032	2.0389	$104.5 \\ 104.5$	+14.5 -14.5	42.7	$63.7 \\ 84.2$	2.08 2.75	This work This work
O ⁻ in KI	1,9733	2.3023	81.4 81.4	+17.5 -17.5	20.4 - 13.9	79.1 121	2.585	8
Hartree-Fock oxygen 2p orbital Hartree-Fock oxygen 2p orbital Oxygen ³ P					- 6.4	103 120 106	3.37 3.92 3.46	15 16 13

TABLE I σ values and ¹⁷O hyperfine splitting constants for O^{*}

other hand if the t_{\perp}^{17} is chosen to be negative for O^- in KI and positive for the V_F center, the respective values of α^{17} and $\langle r^{-3} \rangle_s$ are very nearly the same: about 21.6 G for α^{17} and 2.67×10²⁵ cm⁻³ for $\langle r^{-3} \rangle_s$. A positive sign for α^{17} is not an unlikely possibility; after all, an O⁻ radical in a crystal is not the same as a free atom. The O⁻ radical might show a greater resemblance to an oxygen atom in a π radical where the spin polarization at the oxygen nucleus was shown to be positive.¹⁷⁻²⁰ Also since the $V_{\rm F}$ center lacks rereflection symmetry in the xy plane, a small amount of sp hybridization will result in a positive contribution to α^{17} .

The low value of $\langle r^{-3} \rangle_s$ for O⁻ compared to that calculated for the free atom might result from higher screening by the inner-shell electrons in O⁻. This effect is expected to vary continuously from O⁻ to the free atom. It would therefore be interesting to determine the $\langle r^{-3} \rangle_s$ values in the series of radicals O⁻, O_2^- , O_3^- and other oxy- π radicals in which the effective charge on the oxygen is gradually decreasing.

⁴B. Henderson and J. E. Wertz, Advan. Phys. 17, 750 (1968).

⁵F. W. Webster and E. A. D. White, J. Cryst. Growth 5, 167 (1969).

⁶Recently successful growth of ¹⁷O-labeled single crystals of MgO was also reported by G. Garton, B. F. Hann, and B. M. Wanklyn, in Proceedings of the International Conference on Crystal Growth, Marseille, France, July 1971 (unpublished).

⁷W. M. Walsh, Phys. Rev. 122, 762 (1961).

⁸J. R. Brailsford, J. R. Morton, and L. E. Vannotti, J. Chem. Phys. 49, 2237 (1968).

⁹L. E. Vannotti and J. R. Morton, Phys. Rev. 174, 448 (1968).

¹⁰H. R. Zeller and W. Känzig, Helv. Phys. Acta <u>40</u>, 845 (1967).

¹¹R. T. Shuey and H. R. Zeller, Helv. Phys. Acta <u>40</u>, 873 (1967).

¹²H. R. Zeller, R. T. Shuey, and W. Känzig, J. Phys. (Paris) Colloq. 28, C4-81 (1967).

¹³J. S. M. Harvey, Proc. Roy. Soc., Ser. A 285, 581 (1965).

¹⁴We associate positive spin densities in the p and sorbitals with positive β^{17} and α^{17} , and thus in the definition of β^{17} and α^{17} we consider only the absolute value of γ_{17} .

¹⁵E. Clementi, C. C. J. Roothaan, and M. Yoshimine, Phys. Rev. 127, 1618 (1962).

¹⁶C. M. Hund and P. Coodin, J. Phys. Chem. Solids 28, 523 (1967).

¹⁷Z. Luz, B. L. Silver, and C. Eden, J. Chem. Phys.

44, 4421 (1966). ¹⁸M. Broze, Z. Luz and B. L. Silver, J. Chem. Phys. 46, 4891 (1967).

¹⁹M. Broze and Z. Luz, J. Chem. Phys. <u>51</u>, 738 (1969). ²⁰R. Poupko, B. L. Silver, and M. Rubinstein, J.

Amer. Chem. Soc. 92, 4512 (1970).

^{*}Work performed under the partial sponsorship of the U.S. National Bureau of Standards, Grant No. 1-35772.

¹J. E. Wertz, P. Auzins, J. H. E. Griffiths, and J. W. Orton, Discuss. Faraday Soc. 28, 136 (1959).

²J. E. Wertz and P. V. Auzins, Phys. Rev. 129, A1645 (1965).

³P. W. Kirklin, P. Auzins, and J. E. Wertz, J. Phys. Chem. Solids 26, 1067 (1965).